One-Sided Versus Two-Sided Error in Probabilistic Computation

  • Harry Buhrman
  • Lance Fortnow
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1563)

Abstract

We demonstrate how to use Lautemann’s proof that BPP is in Σ2p to exhibit that BPP is in RPPromiseRP. Immediate consequences show that if PromiseRP is easy or if there exist quick hitting set generators then P = BPP. Our proof vastly simplifies the proofs of the later result due to Andreev, Clementi and Rolim and Andreev,

Clementi, Rolim and Trevisan.

Clementi, Rolim and Trevisan question whether the promise is necessary for the above results, i.e., whether BPP ⊂-RPRP for instance. We give a relativized world where P = RP ≠ BPP and thus the promise is indeed needed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ACR98]
    A. Andreev, A. Clement, and J. Rolim. A new derandomization method. Journal of the ACM, 45(1):179–213, Januari 1998.Google Scholar
  2. [ACRT97]
    A. Andreev, A. Clement, J. Rolim, and L. Trevisan. Weak random sources, hittings sets, and BPP simulations. In Proceedings of the 38th IEEE Symposium on Foundations of Computer Science, pages 264–272. IEEE, New York, 1997.CrossRefGoogle Scholar
  3. [BI87]
    M. Blum and R. Impagliazzo. Generic oracles and oracle classes. In Proceedings of the 28th IEEE Symposium on Foundations of Computer Science, pages 118–126. IEEE, New York, 1987.Google Scholar
  4. [CRT98]
    A. Clementi, J. Rolim, and L. Trevisan. Recent advances towards proving BPP = P. Bulletin of the European Association for Theoretical Computer Science, 64:96–103, February 1998.Google Scholar
  5. [FFKL93]
    S. Fenner, L. Fortnow, S. Kurtz, and L. Li. An oracle builder’s toolkit. In Proceedings of the 8th IEEE Structure in Complexity Theory Conference, pages 120–131. IEEE, New York, 1993.Google Scholar
  6. [GS88]
    J. Grollmann and A Selman. Complexity measures for public-key cryptosystems. SIAM Journal on Computing, 17:309–355, 1988.MATHCrossRefMathSciNetGoogle Scholar
  7. [Hel86]
    H. Heller. On relativized exponential and probabilistic complexity classes. Information and Computation, 71:231–243, 1986.MATHMathSciNetGoogle Scholar
  8. [IN88]
    R. Impagliazzo and M. Naor. Decision trees and downward closures. In Proceedings of the 3rd IEEE Structure in Complexity Theory Conference, pages 29–38. IEEE, New York, 1988.CrossRefGoogle Scholar
  9. [Lau83]
    C. Lautemann. BPP and the polynomial hierarchy. Information Processing Letters, 17(4):215–217, 1983.MATHCrossRefMathSciNetGoogle Scholar
  10. [Nis91]
    N. Nisan. CREW PRAMSs and decision trees. SIAM Journal on Computing, 20(6):999–1007, December 1991.Google Scholar
  11. [Sip83]
    M. Sipser. A complexity theoretic approach to randomness. In Proceedings of the 15th ACM Symposium on the Theory of Computing, pages 330–335. ACM, New York, 1983.Google Scholar
  12. [Zac88]
    S. Zachos. Probabilistic quantifiers and games. Journal of Computer and System Sciences, 36:433–451, 1988.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Harry Buhrman
    • 1
  • Lance Fortnow
    • 2
  1. 1.CWIAmsterdamThe Netherlands
  2. 2.Department of Computer ScienceUniversity of ChicagoChicago

Personalised recommendations