The Average Time Complexity to Compute Prefix Functions in Processor Networks

  • Andreas Jakoby
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1563)

Abstract

We analyze the average time complexity of evaluating all prefixes of an input vector over a given algebraic structure 〈 Σ,⊗〉. As a computational model networks of finite controls are used and a complexity measure for the average delay of such networks is introduced. Based on this notion, we then define the average case complexity of a computational problem for arbitrary strictly positive input distributions. We give a complete characterization of the average complexity of prefix functions with respect to the underlying algebraic structure 〈 Σ, ⊗〉 resp. the corresponding Moore-machine M. By considering a related reachability problem for finite automata it is shown that the complexity only depends on two properties of M, called confluence and diffluence. We prove optimal lower bounds for the average case complexity. Furthermore, a network design is presented that achieves the optimal delay for all prefix functions and all inputs of a given length while keeping the network size linear. It differs substantially from the known constructions for the worst case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Beigel, B. Gasarch, M. Li, L. Zhang, Addition in log2 n+O(1) Steps on Average: A Simple Analysis, ECCC, TR96-051, 1996.Google Scholar
  2. 2.
    G. Bilardi, F. Preparata, Size-Time Complexity of Boolean Networks for Prefix Computations, J. of the ACM 36, 1989, 362–382.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    G. Bilardi, F. Preparata, Characterization of Associative Operations with Prefix Circuits of Constant Depth and Linear Size, SIAM J. Comput 19, 1990, 246–255.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    B. E. Briley, Some New Results on Average Worst Case Carry, IEEE Trans. Computers, C-22:5, 1973.Google Scholar
  5. 5.
    A. W. Burks, H. H. Goldstine, J. vonNeumann, Preliminary Discussion of the Logical Design of an Electronic Computing Instrument, John von Neumann Collected Works, Band 5, Editor A. H. Taub, 1961.Google Scholar
  6. 6.
    B. Fagin, Fast Addition of Large Integers, IEEE Tr. Comp. 41, 1992, 1069–1077.CrossRefGoogle Scholar
  7. 7.
    P. Gemmell, M. Horchol, Tight Bounds on Expected Time to Add Correctly and Add Mostly Correctly, Information Processing Letters, 1994, 77–83.Google Scholar
  8. 8.
    A. Jakoby, Die Komplexität von Präfixfunktionen bezüglich ihres mittleren Zeitverhaltens, PhD Thesis, Med. Universität zu Lübeck, 1998. Shaker Verlag, Aachen 1998, Germany.Google Scholar
  9. 9.
    A. Jakoby, R. Reischuk, C. Schindelhauer, Circuit Complexity: from the Worst Case to the Average Case, 26. STOC’94, 1994, 58–67.Google Scholar
  10. 10.
    A. Jakoby, R. Reischuk, C. Schindelhauer, S. Weis, The Average Case Complexity of the Parallel Prefix Problem, 21. ICALP’94, 1994, 593–604.Google Scholar
  11. 11.
    R. Ladner, M. Fischer, Parallel Prefix Computation, J. of the ACM 27, 1980, 831–838.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    J. Reif, Probabilistic Parallel Prefix Computation, Comp. Math. Applic. 26, 1993, 101–110.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    G. Reitwiesner, The Determination of Carry Propagation Length for Binary Addition, IRE Trans. on Electronic Comput., Vol EC-9, 1960, 35–38.MathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Snir, Depth-Size Trade-offs for Parallel Prefix Computation, J. Alg. 7, 1986, 185–201.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Andreas Jakoby
    • 1
  1. 1.Institut für Theoretische InformatikMedizinische Universität zu LübeckLübeckGermany

Personalised recommendations