Memory Organization Schemes for Large Shared Data: A Randomized Solution for Distributed Memory Machines

Extended Abstract
  • Alexander E. Andreev
  • Andrea E. F. Clementi
  • Paolo Penna
  • José D. P. Rolim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1563)


We address the problem of organizing a set T of shared data into the memory modules of a Distributed Memory Machine (DMM) in order to minimize memory access conflicts during read operations. In this paper we present a new randomized scheme that, with high probability, performs any set of r unrelated read operations on the shared data set T in O(log r + log log|T|) parallel time with no memory conflicts and using O(r) processors. The set T is distributed into m DMM memory modules where m is polynomial in r and logarithmic in T, and the overall size of the shared memory used by our scheme is not larger than (1 + 1/ log |T|)|T|(this means that there is “almost” no data replication). The memory organization scheme and most part of all the computations of our method do not depend on the read requests, so they can be performed once and for all during an off-line phase. This is a relevant improvement over the previous deterministic method recently given in [1] when “real-time” applications are considered.


Boolean Function Shared Memory Memory Module Parallel Time Read Request 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.E. Andreev, A.E.F. Clementi, J.D.P. Rolim(1996), On the parallel computation of Boolean functions on unrelated inputs. Proc. of the IV IEEE Israel Symposium on Theory of Computing and Systems (ISTCS’96), IEEE, pp. 155–161.Google Scholar
  2. 2.
    Chin F. (1986), Security Problems on Inference Control for SUM, MAX and MIN Queries. J. of ACM, 33(3), pp. 451–464.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Chor B., and Gilboa N. (1997), Computationally Private Information Retrieval. Proc. of ACM STOC, p. 304–313.Google Scholar
  4. 4.
    Chor B., Goldreich O., Kushilevitz E., and Sudan M. (1995), Private Information Retrieval. Proc of IEEE FOCS, pp. 41–50.Google Scholar
  5. 5.
    Dobkin D., Jones A. K., Lipton R.J. (1979), Secure Databases: Protection Against User Influence, ACM Trans. on Database Systems, 4(1), pp. 97–106.CrossRefGoogle Scholar
  6. 6.
    Gertner Y., Goldwasser S., and Malkin T. (1998), A Random Server Model for Private Information Retrieval. Technical Report MIT-LCS-TR-715. To appear on Proc. RANDOM’ 98 Google Scholar
  7. 7.
    Gertner Y., Ishai Y., Kushilevitz E., and Malkin T. (1998), Protecting Data Privacy in Private Information Retrieval Schemes. Proc. of ACM STOC.Google Scholar
  8. 8.
    Karp R. M., Luby M., and Meyer auf der Heide F. (1996), Efficient PRAM Simulation on a Distributed Memory Machine. Algoritmica, 16, pp. 517–542(Extended Abstract in A CM STOC 1992).zbMATHCrossRefGoogle Scholar
  9. 9.
    Karlin A. and Upfal E. (1986), Parallel hashing-an efficient implementation of shared memory. Proc. of ACM STOC, 160–168.Google Scholar
  10. 10.
    Kruskal C.P., Rudolph L., and Snir M. (1990), A Complexity Theory of Efficient Parallel Algorithms. Theoret. Comput. Sci, 71, p. 95–132.Google Scholar
  11. 11.
    Kumar V., Grama A., Gupta A., and Karypis G. (1995), Introduction to Parallel Computing. Benjamin/Cummings Publ. Company.Google Scholar
  12. 12.
    T. Leighton(1992), Introduction to parallel algorithms and architectures: arrays, trees, hypercubes. Morgan Kaufmann Publishers, san Mateo,CA.Google Scholar
  13. 13.
    Liu Z., Li X., and You J. (1992), On storage schemes for parallel array access. Proc. ACMICS, pp. 282–291.Google Scholar
  14. 14.
    Mehlhorn K. and Vishkin U. (1984), Randomized and Deterministic Simulation of PRAM by Parallel Machines with Restricted Granularity of Parallel Memories. ACTA Informatica, 21, pp. 339–374.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Pietracaprina A., and F. P. Preparata (1993), A Practical Constructive Scheme for Deterministic Shared-Memory Access. Proc of ACM SPAA, p. 100–109.Google Scholar
  16. 16.
    Pluris Inc. (1998), Pluris Massively Parallel Routing. Technical Report available at
  17. 17.
    Pluris Inc. (1998), Parallel Routing, Technical report available at
  18. 18.
    Tannenbaum A. (1994), Computer Networks. Prenctice Hall, III Edition.Google Scholar
  19. 19.
    Ullman J.D. (1982) Principles of Database Systems. II edition.Google Scholar
  20. 20.
    Upfal E. (1984), Efficient Schemes for Parallel Communication. J. of the ACM, 31(3), pp. 507–517.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Upfal E. and Wigderson A. (1987), How to share memory in a distributed system, J. of the ACM, 34, pp. 116–127.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Alexander E. Andreev
    • 1
  • Andrea E. F. Clementi
    • 2
  • Paolo Penna
    • 2
  • José D. P. Rolim
    • 3
  1. 1.LSI LogicUSA
  2. 2.Dipartimento di Matematica“Tor Vergata” University of RomeItaly
  3. 3.Centre Universitaire d’InformatiqueUniversity of Geneva

Personalised recommendations