Circuit Complexity of Testing Square-Free Numbers

  • Anna Bernasconi
  • Igor Shparlinski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1563)

Abstract

In this paper we extend the area of applications of the Abstract Harmonic Analysis to the field of Boolean function complexity. In particular, we extend the class of functions to which a spectral technique developed in a series of works of the first author can be applied. This extension allows us to prove that testing square-free numbers by unbounded fan-in circuits of bounded depth requires a superpolynomial size. This implies the same estimate for the integer factorization problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Allender, M. Saks and I. E. Shparlinski, ‘A lower bound for primality’, Preprint, 1998, 1–11.Google Scholar
  2. 2.
    A. Bernasconi, ‘On the complexity of balanced Boolean functions’, Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 1203 (1997), 253–263.Google Scholar
  3. 3.
    A. Bernasconi, ‘Combinatorial properties of classes of functions hard to compute in constant depth’, Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 1449 (1998), 339–348.CrossRefGoogle Scholar
  4. 4.
    A. Bernasconi and B. Codenotti, ‘Measures of Boolean function complexity based on harmonic analysis’, Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 778 (1994), 63–72.Google Scholar
  5. 5.
    A. Bernasconi, B. Codenotti and J. Simon, On the Fourier analysis of Boolean functions, Preprint (1996), 1–24.Google Scholar
  6. 6.
    A. Bernasconi, C. Damm and I. E. Shparlinski, ‘Circuit and decision tree complexity of some number theoretic problems’, Tech. Report 98-21, Dept. of Math, and Comp. Sci., Univ. of Trier, 1998, 1–17.Google Scholar
  7. 7.
    A. Bernasconi, C. Damm and I. E. Shparlinski, ‘On the average sensitivity of testing square-free numbers’, Preprint, 1998, 1–11.Google Scholar
  8. 8.
    R. B. Boppana, ‘The average sensitivity of bounded-depth circuits’, Inform. Proc. Letters, 63 (1997), 257–261.CrossRefMathSciNetGoogle Scholar
  9. 9.
    R. B. Boppana and M. Sipser, ‘The complexity of finite functions’, Handbook of Theoretical Comp. Sci., Vol. A, Elsevier, Amsterdam (1990), 757–804.Google Scholar
  10. 10.
    D. Coppersmith and I. E. Shparlinski, ‘On polynomial approximation of the discrete logarithm and the Diffie-Hellman mapping’, J. Cryptology (to appear).Google Scholar
  11. 11.
    M. Dietzfelbinger, M. Kutylowski and R. Reischuk, ‘Feasible time-optimal algorithms for Boolean functions on exclusive-write parallel random access machine’, SIAM J. Comp., 25 (1996), 1196–1230.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    F. E. Fich, ‘The complexity of computation on the parallel random access machine’, Handbook of Theoretical Comp. Sci., Vol. A, Elsevier, Amsterdam (1990), 757–804.Google Scholar
  13. 13.
    M. Furst, J. Saxe and M. Sipser, ‘Parity, circuits, and the polynomial time hierarchy’, Math. Syst. Theory, 17 (1984), 13–27.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    M. Goldmann, ‘Communication complexity and lower bounds for simulating threshold circuits’, Theoretical Advances in Neural Computing and Learning, Kluwer Acad. Publ., Dordrecht (1994), 85–125.Google Scholar
  15. 15.
    D. Grigoriev and M. Karpinski, ‘An exponential lower bound for depths 3 arithmetic circuits’ Proc. 30 ACM Symp. on Theory of Comp. (1998), 577–582.Google Scholar
  16. 16.
    D. Grigoriev and A. Razborov, ‘Exponential lower bounds for depths 3 arithmetic circuits in algebras of functions over finite fields’ Proc. 39 IEEE Symp. on Found. of Comp. Sci., 1998 (to appear).Google Scholar
  17. 17.
    G. H. Hardy and E. M. Wright, An introduction to the number theory, Oxford Univ. Press, Oxford (1965).Google Scholar
  18. 18.
    D. R. Heath-Brown, ‘The least square-free number in an arithmetic progression’, J. Reine Angew. Math., 332 (1982), 204–220.MATHMathSciNetGoogle Scholar
  19. 19.
    N. Linial, Y. Mansour and N. Nisan, ‘Constant depth circuits, Fourier transform, and learnability’, Journal of the ACM, 40 (1993) 607–620.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Y. Mansour, ‘Learning Boolean functions via the Fourier transform’, Theoretical Advances in Neural Computing and Learning, Kluwer Acad. Publ., Dordrecht (1994), 391–424.Google Scholar
  21. 21.
    N. Nisan and M. Szegedy, ‘On the degree of Boolean functions as real polynomials’, Comp. Compl., 4 (1994), 301–313.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    I. Parberry and P. Yuan Yan, ‘Improved upper and lower time bounds for parallel random access machines without simultaneous writes’, SIAM J. Comp., 20 (1991), 88–99.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    R. Raz, ‘Fourier analysis for probabilistic communication complexity’, Comp. Compl., 5 (1995), 205–221.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    V. Roychowdhry, K.-Y. Siu and A. Orlitsky, ‘Neural models and spectral methods’, Theoretical Advances in Neural Computing and Learning, Kluwer Acad. Publ., Dordrecht (1994), 3–36.Google Scholar
  25. 25.
    I. E. Shparlinski, Number theoretic methods in cryptography: Complexity lower bounds, Birkhäuser, to appear.Google Scholar
  26. 26.
    I. E. Shparlinski, ‘On polynomial representations of Boolean functions related to some number theoretic problems’, Electronic Colloq. on Comp. Compl., http://www.eccc.uni-trier.de/eccc/, TR98-054, 1998, 1–13.
  27. 27.
    I. Wegener, The complexity of Boolean functions, Wiley-Teubner Series in Comp. Sci., Stuttgart (1987).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Anna Bernasconi
    • 1
  • Igor Shparlinski
    • 2
  1. 1.Institut für InformatikTechnische Universität MünchenMünchenGermany
  2. 2.School of MPCEMacquarie UniversitySydneyAustralia

Personalised recommendations