Classifying Discrete Temporal Properties

  • Thomas Wilke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1563)

Abstract

This paper surveys recent results on the classification of discrete temporal properties, gives an introduction to the methods that have been developed to obtain them, and explains the connections to the theory of finite automata, the theory of finite semigroups, and to first-order logic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Joëlle Cohen, Dominique Perrin, and Jean-Eric Pin. On the expressive power of temporal logic. J. Comput. System Sci., 46(3):271–294, 1993.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with two variables and unary temporal logic. In Proceedings 12th Annual IEEE Symposium on Logic in Computer Science, pages 228–235, Warsaw, Poland, 1997.Google Scholar
  3. 3.
    Kousha Etessami and Thomas Wilke. An until hierarchy for temporal logic. In Proceedings 11th Annual IEEE Symposium on Logic in Computer Science, pages 108–117, New Brunswick, N.J., 1996.Google Scholar
  4. 4.
    Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the temporal analysis of fairness. In Conference Record of the 12th ACM Symposium on Principles of Programming Languages, pages 163–173, Las Vegas, Nev., 1980.Google Scholar
  5. 5.
    JohanAnthonyWillem Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of California, Los Angeles, Calif., 1968.Google Scholar
  6. 6.
    Fred Kröger. Temporal Logic of Programs. Springer, Berlin, 1987.MATHGoogle Scholar
  7. 7.
    Leslie Lamport. Specifying concurrent program modules. ACM Trans. Programming Lang. Sys., 5(2):190–222, 1983.MATHCrossRefGoogle Scholar
  8. 8.
    Oded Maler. Finite Automata: Infinite Behavior, Learnability and Decomposition. PhD thesis, The Weizmann Institute of Science, Rehovot, Israel, 1990.Google Scholar
  9. 9.
    Oded Maler and Amir Pnueli. Tight bounds on the complexity of cascaded decomposition of automata. In Proceedings of the 31st Annual Symposium on Foundations of Computer Science, vol. II, pages 672–682, St. Louis, Miss., 1990.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Robert McNaughton and Seymour Papert. Counter-Free Automata. MIT Press, Cambridge, Mass., 1971.MATHGoogle Scholar
  11. 11.
    Doron Peled and Thomas Wilke. Stutter-invariant temporal properties are expressible without the next-time operator. Inform. Process. Lett., 63(5):243–246, 1997.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Marcel P. Schützenberger. On finite monoids having only trivial subgroups. Inform, and Computation, 8:190–194, 1965.MATHGoogle Scholar
  13. 13.
    Marcel P. Schützenberger. Sur le produit de concatenation non ambigu. Semigroup Forum, 13:47–75, 1976.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Denis Thérien and Thomas Wilke. Temporal logic and semidirect products: An effective characterization of the until hierarchy. In Proceedings of the 37th Annual Symposium on Foundations of Computer Science, pages 256–263, Burlington, Vermont, 1996.Google Scholar
  15. 15.
    Denis Thérien and Thomas Wilke. Temporal logic and semidirect products: An effective characterization of the until hierarchy. Technical report 96-28, DIMACS, Piscataway, N.J., 1996.Google Scholar
  16. 16.
    Denis Thérien and Thomas Wilke. Over words, two variables are as powerful as one quantifier alternation: In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pages 41–47, Dallas, Texas, 1998.Google Scholar
  17. 17.
    Thomas Wilke. Classifying discrete temporal properties. Habilitationsschrift (postdoctoral thesis), Kiel, Germany, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Thomas Wilke
    • 1
  1. 1.Institut für Informatik und Praktische MathematikChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations