Fast Computations of the Exponential Function

  • Timm Ahrendt
Conference paper

DOI: 10.1007/3-540-49116-3_28

Part of the Lecture Notes in Computer Science book series (LNCS, volume 1563)
Cite this paper as:
Ahrendt T. (1999) Fast Computations of the Exponential Function. In: Meinel C., Tison S. (eds) STACS 99. STACS 1999. Lecture Notes in Computer Science, vol 1563. Springer, Berlin, Heidelberg

Abstract

In this paper we present an algorithm which shows that the exponential function has algebraic complexity O(log2n), i.e., can be evaluated with relative error O(2-n) using O(log2n) infinite-precision additions, subtractions, multiplications and divisions. This solves a question of J. M. Borwein and P. B. Borwein [9].

The best known lower bound for the algebraic complexity of the exponential function is Ω(log n).

The best known upper and lower bounds for the bit complexity of the exponential function are O(μ(n) log n) [10] and Ω(ν(n)) [4], respectively, where μ(n) denotes an upper bound and ν(n) denotes a lower bound for the bit complexity of n-bit integer multiplication.

The presented algorithm has bit complexity O(μ(n) log n).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Timm Ahrendt
    • 1
  1. 1.Institut für Informatik IIUniversität BonnBonnGermany

Personalised recommendations