Advertisement

The Reduced Genus of a Multigraph

  • Patrice Ossona de Mendez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1563)

Abstract

We define here the reduced genus of a multigraph as the minimum genus of a hypergraph having the same adjacencies with the same multiplicities. Through a study of embedded hypergraphs, we obtain new bounds on the coloring number, clique number and point arboricity of simple graphs of a given reduced genus. We present some new related problems on graph coloring and graph representation.

Keywords

Planar Graph Chromatic Number Simple Graph Maximal Clique Graph Coloring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Appel and W. Haken. Every planar map is four colorable. part I. discharging. Illinois J. Math., 21:429–490, 1977.zbMATHMathSciNetGoogle Scholar
  2. 2.
    K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. part II. reducibility. Illinois J. Math., 21:491–567, 1977.zbMATHMathSciNetGoogle Scholar
  3. 3.
    C. Berge. Graphes et hypergraphes. Dunod, Paris, second edition, 1973.Google Scholar
  4. 4.
    G. Chartrand and H.V. Kronk. The point arboricity of planar graphs. J. Lond. Math. Soc., 44:612–616, 1969.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    R. Cori. Un code pour les graphes planaires et ses applications, volume 27. Société mathématique de france, Paris, 1975.Google Scholar
  6. 6.
    H. de Fraysseix and P. Ossona de Mendez. Intersection graphs of Jordan arcs. In Stirin 1997 Proc. DIMATIA-DIMACS. (accepted).Google Scholar
  7. 7.
    H. de Fraysseix and P. Ossona de Mendez. Stretchability of Jordan arc contact systems. Technical Report 98-387, KAM-DIMATIA Series, 1998.Google Scholar
  8. 8.
    H. de Fraysseix, P. Ossona de Mendez, and J. Pach. Representation of planar graphs by segments. Intuitive Geometry, 63:109–117, 1991.Google Scholar
  9. 9.
    H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. On triangle contact graphs. Combinatorics, Probability and Computing, 3:233–246, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    B. Descartes. Solution to advanced problem no. 4256. Am. Math. Mon., 61:352, 1954.CrossRefMathSciNetGoogle Scholar
  11. 11.
    P. Erdös, A.L. Rubin, and H. Taylor. Choosability in graphs. In Proc. West-Coast Conference on Combinatorics, Graph Theory and Computing, volume XXVI, pages 125–157, Arcata, California, 1979.Google Scholar
  12. 12.
    I. Fáry. On straight line representation of planar graphs. Acta Scientiarum Mathematicarum Szeged), 11:229–233, 1948.Google Scholar
  13. 13.
    H. Grötzsch. Ein Dreifarbensatz für dreikreisfrei Netze auf der Kugel. Wissenchaftliche Zeitschrift der Martin-Luther-Universität Halle-Wittenberg. Mathematisch-Naturwissenschaftliche Reihe, 8:109–120, 1958/1959.Google Scholar
  14. 14.
    P.J. Heawood. Map color theorem. Q.J. Pure Appl. Math., 24:332–338, 1890.Google Scholar
  15. 15.
    H. Heesch. Untersuchungen zum Vierfarbenproblem. Hochschulskriptum 8 10/a/b, Bibliographisches Institut, Mannheim, 1969.Google Scholar
  16. 16.
    D.S. Johnson and H.O. Pollak. Hypergraph planarity and the complexity of drawing Venn diagrams. Journal of Graph Theory, 11(3):309–325, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    R.P. Jones. Colourings of Hypergraphs. PhD thesis, Royal Holloway College, Egham, 1976.Google Scholar
  18. 18.
    J.B. Kelly and L.M. Kelly. Paths and circuits in critical graphs. Am. J. Math., 76:786–792, 1954.zbMATHCrossRefGoogle Scholar
  19. 19.
    L. Lovasz. On chromatic numbers of finite set systems. Acta Math. Acad. Sci. Hung., 19:59–67, 1968.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    B. Mohar and P. Rosenstiehl. A flow approach to upward drawings of toroidal maps. In proc. of Graph Drawing’ 94, pages 33–39, 1995.Google Scholar
  21. 21.
    J. Mycielski. Sur le coloriage des graphes. Colloq. Math., 3:161–162, 1955.zbMATHMathSciNetGoogle Scholar
  22. 22.
    G. Ringel and J.W.T. Youngs. Solution of the Heawood map coloring problem. volume 60 of Proc. Nat. Acad. Sci., pages 438–445, 1968.Google Scholar
  23. 23.
    N. Robertson, D.P. Sanders, P.D. Seymour, and R. Thomas. A new proof of the four color theorem. Electron. Res. Announc. Amer. Math. Soc., 2:17–25, 1996. (electronic).CrossRefMathSciNetGoogle Scholar
  24. 24.
    N. Robertson, D.P. Sanders, P.D. Seymour, and R. Thomas. The four color theorem. J. Comb Theory, B(70):2–44, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    P. Rosenstiehl and R.E. Tarjan. Rectilinear planar layout and bipolar orientation of planar graphs. Discrete and Computational Geometry, 1:343–353, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    S.K. Stein. Convex maps. In Proc. Amer. Math. Soc., volume 2, pages 464–466, 1951.zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    E. Steinitz and H. Rademacher. Vorlesung über die Theorie der Polyeder. Springer, Berlin, 1934.Google Scholar
  28. 28.
    G. Szekeres and H.S. Wilf. An inequality for the chromatic number of a graph. J. Comb. Theory, 4:1–3, 1968.CrossRefMathSciNetGoogle Scholar
  29. 29.
    C. Thomassen. Every planar graph is 5-choosable. Journal of Combinatorial Theory, B(62):180–181, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    V.G. Vizing. Coloring the vertices of a graph in prescribed colors. Mtody Diskret. Anal. v Teorii Kodov i Schem, 29:3–10, 1976. (In russian).zbMATHMathSciNetGoogle Scholar
  31. 31.
    M. Voigt. A not 3-choosable planar graph without 3-cycles. Discrete Math., 146:325–328, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    M. Voigt and B. Wirth. On 3-colorable non 4-choosable planar graphs. Journal of Graph Theory, 24:233–235, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    K. Wagner. Bemerkungen zum Vierfarbenproblem. Jber. Deutsch. Math. Verein, 46:26–32, 1936.Google Scholar
  34. 34.
    T.R.S. Walsh. Hypermaps versus bipartite maps. J. Combinatorial Theory, 18(B):155–163, 1975.zbMATHGoogle Scholar
  35. 35.
    A.T. White. Graphs, Groups and Surfaces, volume 8 of Mathematics Studies, chapter 13, pages 205–210. North-Holland, Amsterdam, revised edition, 1984.zbMATHGoogle Scholar
  36. 36.
    A.A. Zykov. Hypergraphs. Uspeki Mat. Nauk, 6:89–154, 1974.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Patrice Ossona de Mendez
    • 1
  1. 1.CNRS UMR 0017, E.H.E.S.S.ParisFrance

Personalised recommendations