An Optimal Strategy for Searching in Unknown Streets

  • Sven Schuierer
  • Ines Semrau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1563)

Abstract

We consider the problem of a robot searching for an unknown, yet visually recognizable target in a street. A street is a simple polygon with start and target on the boundary so that the two boundary chains between them are weakly mutually visible. We are interested in the ratio of the search path length to the shortest path length which is called the competitive ratio of the strategy. We present an optimal strategy whose competitive ratio matches the known lower bound of √2, thereby closing the gap between the lower bound and the best known upper bound.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar geometric terrain. In Proc. 23rd ACM Symp. on Theory of Computing, pages 494–503, 1991.Google Scholar
  2. 2.
    A. Datta, Ch. Hipke, and S. Schuierer. Competitive searching in polygons-beyond generalized streets. In Proc. Sixth International Symposium on Algorithms and Computation, pages 32–41. LNCS 1004, 1995.Google Scholar
  3. 3.
    A. Datta and Ch. Icking. Competitive searching in a generalized street. In Proc. 10th ACM Symp. on Computational Geometry, pages 175–182, 1994.Google Scholar
  4. 4.
    Ch. Icking. Motion and Visibility in Simple Polygons. PHD thesis, FernUniversit:at Hagen, 1994.Google Scholar
  5. 5.
    Ch. Icking and R. Klein. Searching for the kernel of a polygon: A competitive strategy. In Proc. 11th ACM Symp. on Computational Geometry, pages 258–266, 1995.Google Scholar
  6. 6.
    Ch. Icking, R. Klein and E. Langetepe. An Optimal Competitive Strategy for Walking in Streets. This Proceedings.Google Scholar
  7. 7.
    Ch. Icking, A. Lopez-Ortiz, S. Schuierer, and I. Semrau. Going home through an unknown street. Manuscript, 1998. Submitted to Comptutational Geometry: Theory and Applications.Google Scholar
  8. 8.
    B. Kalyanasundaram and K. Pruhs. A competitive analysis of algorithms for searching unknownscenes. Computational Geometry: Theory and Applications, 3:139–155, 1993.MATHMathSciNetGoogle Scholar
  9. 9.
    R. Klein. Walking an unknown street with bounded detour. Computationl Geometry: Theory and Applications, 1:325–351, 1992.MATHGoogle Scholar
  10. 10.
    J. M. Kleinberg. On-line search in a simple polygon. In Proc. 5th ACM-SIAM Symp. on Discrete Algorithms, pages 8–15, 1994.Google Scholar
  11. 11.
    A. Lóopez-Ortiz. On-line Target Searching in Bounded and Unbounded Domains. PhD thesis, Department of Computer Science, University of Waterloo, 1996.Google Scholar
  12. 12.
    A. Lóopez-Ortiz and S. Schuierer. Going home through an unknown street. S. G. Akl, F. Dehne, and J.-R. Sack, editors, In Proc. of 4th Workshop on Data Structures and Algorithms, LNCS 955, pages 135–146, 1995.Google Scholar
  13. 13.
    A. López-Ortiz and S. Schuierer. Simple, efficient and robust strategies to traverse streets. In Ch. Gold and J.-M. Robert, editors, Proc. Seventh Canadian Conference on Computational Geometry, pages 217–222. Université Laval, 1995.Google Scholar
  14. 14.
    A. López-Ortiz and S. Schuierer. Walking streets faster. In Proc. 5th Scandinavian Workshop on Algorithm Theory, pages 345–356. LNCS 1097, 1996Google Scholar
  15. 15.
    A. López-Ortiz and S. Schuierer. Generalized streets revisited. In M. Serna J. Diaz, editor, Proc. 4th European Symposium on Algorithms, pages 546–558. LNCS 1136, 1996.Google Scholar
  16. 16.
    A. López-Ortiz and S. Schuierer. Position-independent near optimal searching and on-line recognition in star polygons. In Proc. 5th Workshop on Algorithms and Data Structures, pages 284–296. LNCS 1272, 1997.Google Scholar
  17. 17.
    A. López-Ortiz and S. Schuierer. The Exact Cost of Exploring Streets with a CAB. In Proc. 10th Canadian Conf. on Computational Geometry, 1998.Google Scholar
  18. 18.
    I. Semrau. Analyse und experimentelle Untersuchung von Strategien zum Finden eines Ziels in Straßenpolygonen. Masters thesis (Diplomarbeit), FernUniversität Hagen, 1996.Google Scholar
  19. 19.
    D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Communications of the ACM, 28:202–208, 1985.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Sven Schuierer
    • 1
  • Ines Semrau
    • 1
  1. 1.Institut fur InformatikUniversitat FreiburgFreiburgGermany

Personalised recommendations