An Optimal Competitive Strategy for Walking in Streets

  • Christian Icking
  • Rolf Klein
  • Elmar Langetepe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1563)


We present an optimal strategy for searching for a goal in a street which achieves the competitive factor of √2, thus matching the best lower bound known before. This finally settles an interesting open problem in the area of competitive path planning many authors have been working on.

Key words

Computational geometry autonomous robot competitive strategy LR-visibility on-line navigation path planning polygon street 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Angluin, J. Westbrook, and W. Zhu. Robot navigation with range queries. In Proc. 28th Annu. ACM Sympos. Theory Comput., pages 469–478, May 1996.Google Scholar
  2. [2]
    R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Inform. Comput., 106:234–252, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    P. Berman. On-line searching and navigation. In A. Fiat and G. Woeginger, editors, Competitive Analysis of Algorithms. Springer-Verlag, 1998.Google Scholar
  4. [4]
    A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar geometric terrain. SIAM J. Comput., 26(1):110–137, Feb. 1997.Google Scholar
  5. [5]
    G. Das, P. Heffernan, and G. Narasimhan. LR-visibility in polygons. Comput. Geom. Theory Appl., 7:37–57, 1997.zbMATHMathSciNetGoogle Scholar
  6. [6]
    S. K. Ghosh and S. Saluja. Optimal on-line algorithms for walking with minimum number of turns in unkn. streets. Comput. Geom. Theory Appl., 8:241–266, 1997.zbMATHMathSciNetGoogle Scholar
  7. [7]
    C. Icking. Motion and Visibility in Simple Polygons. PhD thesis, FernUniversität Hagen, 1994.Google Scholar
  8. [8]
    C. Icking, A. López-Ortiz, S. Schuierer, and I. Semrau. Going home through an unknown street. Technical Report 228, Dep. of Comp. Science, FernUniversität Hagen, 1998., submitted.Google Scholar
  9. [9]
    R. Klein. Walking an unknown street with bounded detour. Comput. Geom. Theory Appl., 1:325–351, 1992.zbMATHGoogle Scholar
  10. [10]
    J. M. Kleinberg. On-line search in a simple polygon. In Proc. 5th ACM-SIAM Sympos. Discrete Algorithms, pages 8–15, 1994.Google Scholar
  11. [11]
    A. López-Ortiz and S. Schuierer. Going home through an unknown street. In Proc. 4th Workshop Algorithms Data Struct., volume 955 of Lecture Notes Comput. Sci., pages 135–146. Springer-Verlag, 1995.Google Scholar
  12. [12]
    A. López-Ortiz and S. Schuierer. Walking streets faster. In Proc. 5th Scand. Workshop Algorithm Theory, volume 1097 of Lecture Notes Comput. Sci., pages 345–356. Springer-Verlag, 1996.Google Scholar
  13. [13]
    J. S. B. Mitchell. Geometric shortest paths and network optimization. In J. R. Sack and J. Urrutia, editors, Handbook of Computational Geometry. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 1998.Google Scholar
  14. [14]
    N. S. V. Rao, S. Kareti, W. Shi, and S. S. Iyengar. Robot navigation in unknown terrains: introductory survey of non-heuristic algorithms. Technical Report ORNL/TM-12410, Oak Ridge National Laboratory, 1993.Google Scholar
  15. [15]
    S. Schuierer and I. Semrau. An optimal strategy for searching in unknown streets. Institut für Informatik, Universität Freiburg, 1998.Google Scholar
  16. [16]
    I. Semrau. Analyse und experimentelle Untersuchung von Strategien zum Finden eines Ziels in Straßenpolygonen. Diploma thesis, FernUniversität Hagen, 1996.Google Scholar
  17. [17]
    L. H. Tseng, P. Heffernan, and D. T. Lee. Two-guard walkability of simple polygons. Internat. J. Comput. Geom. Appl., 8(1):85–116, 1998.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Christian Icking
    • 1
  • Rolf Klein
    • 1
  • Elmar Langetepe
    • 1
  1. 1.Praktische Informatik VIFernUniversität HagenHagen

Personalised recommendations