Abstract

A sound and complete Hoare-style proof system is presented for a sequential object-oriented language, called SPOOL. The proof system is based on a weakest precondition calculus for aliasing and object- creation.

References

  1. 1.
    M. Abadi and K. R. M. Leino: A logic of object-oriented programs. Proceedings of the 7th International Joint Conference CAAP/FASE, vol. 1214 of Lecture Notes in Computer Science, April 1997.Google Scholar
  2. 2.
    P. America: Definition of the programming language POOL-T. ESPRIT project 415A, Doc. No. 0091, Philips Research Laboratories, Eindhoven, the Netherlands, September 1985.Google Scholar
  3. 3.
    K. R. Apt: Ten years of Hoare logic: a survey — part I. ACM Transactions on Programming Languages and Systems, Vol. 3, No. 4, October 1981, pp. 431–483.MATHCrossRefGoogle Scholar
  4. 4.
    P. America and F. S. de Boer: Reasoning about dynamically evolving process structures. Formal Aspects of Computing. Vol. 6, No. 3, 1994.Google Scholar
  5. 5.
    J. W. de Bakker: Mathematical Theory of Program Correctness. Prentice-Hall International, Englewood Cliffs, New Jersey, 1980.MATHGoogle Scholar
  6. 6.
    F. S. de Boer: Reasoning about dynamically evolving process structures (A proof theory of the parallel object-oriented language POOL). PhD. Thesis. Free University, Amsterdam, 1991.Google Scholar
  7. 7.
    F. S. de Boer: A proof system for the parallel object-oriented laguage POOL. Proceedings of the seventeenth International Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in Computer Science, Vol. 443, Warwick, England, 1990.Google Scholar
  8. 8.
    F. S. de Boer: A compositional proof system for dynamic process creation. Proceedings of the sixth annual IEEE symposium on Logics in Computer Science (LICS), IEEE Computer Society Press, Amsterdam, The Netherlands, 1991.Google Scholar
  9. 9.
    J. M. Morris: Assignment and linked data structures. Manfred Broy, Gunther Schmidt (eds.): Theoretical Foundations of Programming Methodology. Reidel, 1982, pp. 35–41.Google Scholar
  10. 10.
    A. Poetzsch and P. Mueller: Logical foundations for typed object-oriented languages. Proceedings of the IFIP Working Conference on Programming Concepts and Methods (PROCOMET98).Google Scholar
  11. 11.
    D. S. Scott: Identity and existence in intuitionistic logic. M. P. Fourman, C. J. Mulvey, D. S. Scott (eds.): Applications of Sheaves. Proceedings, Durham 1977, Springer-Verlag, 1979, pp. 660–696 (Lecture Notes in Mathematics 753).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • F. S de Boer
    • 1
  1. 1.Utrecht UniversityThe Netherlands

Personalised recommendations