Polarized Proof-Nets: Proof-Nets for LC

  • Olivier Laurent
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1581)

Abstract

We define a notion of polarization in linear logic (LL) coming from the polarities of Jean-Yves Girard’s classical sequent calculus LC [4]. This allows us to define a translation between the two systems. Then we study the application of this polar ization constraint to proofnets for full linear logic described in [7]. This yields an important simplification of the correctness criterion for polarized proof-nets. In this way we obtain a system of proof-nets for LC.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. Computational isomorphisms in classical logic (extended abstract). In Jean-Yves Girard, Mitsu Okada, and Andr Scedrov, editors, Proceedings Linear Logic’ 96 Tokyo Meeting, volume 3 of Electronic Notes in Theoretical Computer Science. Elsevier, Amsterdam, 1996.Google Scholar
  2. [2]
    Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive for Mathematical Logic, 28:181–203, 1989.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Jean-Yves Girard. A new constructive logic: classical logic. Mathematical Structures in Computer Science, 1(3):255–296, 1991.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Jean-Yves Girard. Quantifiers in linear logic II. In Corsi and Sambin, editors, Nuovi problemi della logica e della filosofia della scienza, pages 79–90, Bologna, 1991. CLUEB.Google Scholar
  6. [6]
    Jean-Yves Girard. On the unity of logic. Annals of Pure and Applied Logic, 59:201–217, 1993.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Jean-Yves Girard. Proof-nets: the parallel syntax for proof-theory. In Ursini and Agliano, editors, Logic and Algebra, New York, 1996. Marcel Dekker.Google Scholar
  8. [8]
    Franois Lamarche. From proof nets to games (extended abstract). In Jean-Yves Girard, Mitsu Okada, and Andr Scedrov, editors, Proceedings Linear Logic’ 96 Tokyo Meeting, volume 3 of Electronic Notes in Theoretical Computer Science. Elsevier, Amsterdam, 1996.Google Scholar
  9. [9]
    Myriam Quatrini and Lorenzo Tortora de Falco. Polarisation des preuves classiques et renversement. Compte Rendu de l’Acadmie des Sciences de Paris, 323:113–116, 1996.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Olivier Laurent
    • 1
  1. 1.Institut de Mathématiques de Luminy CNRS-MarseilleMarseilleFrance

Personalised recommendations