Computationally Private Information Retrieval with Polylogarithmic Communication

  • Christian Cachin
  • Silvio Micali
  • Markus Stadler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1592)

Abstract

We present a single-database computationally private information retrieval scheme with polylogarithmic communication complexity. Our construction is based on a new, but reasonable intractability assumption, which we call the Φ-Hiding Assumption (ΦHA): essentially the difficulty of deciding whether a small prime divides Φ(m), where m is a composite integer of unknown factorization.

Keywords

Integer factorization Euler’s function Φ-hiding assumption Private information retrieval 

References

  1. 1.
    L. M. Adleman and M.-D. A. Huang, “Recognizing primes in random polynomial time,” in Proc. 19th Annual ACM Symposium on Theory of Computing (STOC), pp. 462–469, 1987.Google Scholar
  2. 2.
    A. Ambainis, “Upper bound on the communication complexity of private information retrieval,” in Proc. 24th ICALP, vol. 1256 of Lecture Notes in Computer Science, Springer, 1997.Google Scholar
  3. 3.
    E. Bach and J. Shallit, Algorithmic Number Theory, vol. 1: Efficient Algorithms. Cambridge: MIT Press, 1996.Google Scholar
  4. 4.
    M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson, “Multi prover interactive proofs: How to remove intractability,” in Proc. 20th Annual ACM Symposium on Theory of Computing (STOC), pp. 113–131, 1988.Google Scholar
  5. 5.
    M. Blum, A. De Santis, S. Micali, and G. Persiano, “Noninteractive zeroknowledge,” SIAM Journal on Computing, vol. 20, pp. 1085–1118, Dec. 1991.CrossRefGoogle Scholar
  6. 6.
    B. Chor and N. Gilboa, “Computationally private information retrieval,” in Proc. 29th Annual ACM Symposium on Theory of Computing (STOC), pp. 304–313, 1997.Google Scholar
  7. 7.
    B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information retrieval,” in Proc. 36th IEEE Symposium on Foundations of Computer Science (FOCS), 1995.Google Scholar
  8. 8.
    D. A. Cooper and K. P. Birman, “Preserving privacy in a network of mobile computers,” in Proc. IEEE Symposium on Security and Privacy, pp. 26–38, 1995.Google Scholar
  9. 9.
    D. Coppersmith, “Finding a small root of a bivariate integer equation; factoring with high bits known,” in Advances in Cryptology: EUROCRYPT’ 96 (U. Maurer, ed.), vol. 1233 of Lecture Notes in Computer Science, Springer, 1996.Google Scholar
  10. 10.
    D. Coppersmith, “Finding a small root of a univariate modular equation,” in Advances in Cryptology: EUROCRYPT’ 96 (U. Maurer, ed.), vol. 1233 of Lecture Notes in Computer Science, Springer, 1996.Google Scholar
  11. 11.
    D. Coppersmith. personal communication, 1998.Google Scholar
  12. 12.
    S. Goldwasser and J. Kilian, “Almost all primes can be quickly certified,” in Proc. 18th Annual ACM Symposium on Theory of Computing (STOC), pp. 316–329, 1986.Google Scholar
  13. 13.
    S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of Computer and System Sciences, vol. 28, pp. 270–299, 1984.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme secure against adaptive chosen-message attacks,” SIAM Journal on Computing, vol. 17, pp. 281–308, Apr. 1988.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    E. Kushilevitz and R. Ostrovsky, “Replication is not needed: Single database, computationally-private information retrieval,” in Proc. 38th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 364–373, 1997.Google Scholar
  16. 16.
    M. O. Rabin, “How to exchange secrets by oblivious transfer,” Tech. Rep. TR-81, Harvard, 1981.Google Scholar
  17. 17.
    R. Solovay and V. Strassen, “A fast monte-carlo test for primality,” SIAM Journal on Computing, vol. 6, no. 1, pp. 84–85, 1977.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Christian Cachin
    • 1
  • Silvio Micali
    • 2
  • Markus Stadler
    • 3
  1. 1.IBM Zurich Research LaboratoryRüschlikonSwitzerland
  2. 2.Laboratory for Computer ScienceMITCambridgeUSA
  3. 3.Crypto AGZugSwitzerland

Personalised recommendations