Towards an Ontology for Substances and Related Actions

  • Björn Höfling
  • Thorsten Liebig
  • Dietmar Rösner
  • Lars Webel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1621)


Modelling substances in knowledge representation has to be different from the treatment of discrete objects. For example liquids need a different approach to individuation. We propose an ontology which represents physical states and other properties of substances in a uniform way. Based on this we describe how to model a hierarchy of actions that can deal with such substances. For these actions a general distinction is made with respect to the type of properties the actions are changing. Further we describe an implementation in description logic allowing especially the definition of actions by specialization of more abstract actions and the inheritance of pre- and postconditions.


Description Logic Abstract Action Mixed Substance Extrinsic Property Discrete Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AF97]
    Alessandro Artale and Enrico Franconi. A temporal description logic for reasoning about action and plans.In Journal of Artificial Intelligence Research, 1997.Google Scholar
  2. [BKMW90]
    J. Bateman, R. Kasper, J. Moore, and R. Whitney. A general organization of knowledge for natural language processing: the penman upper model. Technical report, USC/ISI, 1990.Google Scholar
  3. [Dal92]
    Robert Dale. Generating Referring Expressions, Constructing Descriptions in a Domain of Objects and Processes. MIT Press Cambridge, Massachusetts, 1992.Google Scholar
  4. [DL91]
    Premkumar T. Devanbu and Diane J. Litman. Plan-based terminological reasoning. In J. F. Doyle, R. Files, and Erik Sandewall, editors, Principles of Knowledge Representation and Reasoning, Proceedings of the Second International Conference (KR’ 91), pages 128–138, Cambridge, MA, April 1991. Morgan Kaufmann Publishers, Inc., San Francisco, CA.Google Scholar
  5. [FN71]
    Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Inteligence, 2(3–4):189–208, 1971.zbMATHCrossRefGoogle Scholar
  6. [GF92]
    Michael R. Genesereth and Richard E. Fikes. Knowledge Interchange Format, V. 3.0, Reference Manual. Stanford University, June 1992.Google Scholar
  7. [Gru95]
    Thomas R. Gruber. Towards principles for the design of ontologies used for knowledge sharing. International Journal of Human Computer Studies, 43:907–928, 5/6 1995. Also available as Technical Report KSL 93-04, Knowledge Systems Laboratory, Stanford University.CrossRefGoogle Scholar
  8. [Hay85]
    Patrick J. Hayes. Formal theories of the commensense world, chapter Naive physics I: Ontology for Liquids, pages 71–107. Ablex Publishing Corporation, 1985.Google Scholar
  9. [HKNP92]
    J. Heinsohn, D. Kudenko, B. Nebel, and H. Profitlich. RAT: representation of actions using terminological logics. Technical report, DFKI, Saarbrücken, 1992.Google Scholar
  10. [LRn97]
    Thorsten Liebig and Dietmar Röosner. Action hierarchies for the automatic generation of multilingual technical documents. In Rémi Zajac, editor, IJCAI-97 Workshop Ontologies and Multilingual NLP, Nagoya, Japan, August 1997.International Joint Conference on Artificial Intelligence.Google Scholar
  11. [Mac94]
    Robert M. MacGregor. A description classiffer for the predicate calculus. In Proceedings of the Twelfth National Conference on Artificial Intelligence, pages 213–230, 1994.Google Scholar
  12. [Mey88]
    Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New York, 1988.Google Scholar
  13. [NH98]
    Natalya Fridman Noy and Carole D. Hafner. Representing Scientific experiments: Implications for Ontology Design and Knowledge Sharing. In 15th National Conference on Artificial Intelligence (AAAI98), Madison Wisconsin, July 1998. AAAI Press.Google Scholar
  14. [PS89]
    Francis Jeffry Pelletier and Lenhart K. Schubert. Handbook of philosophical logic, chapter Mass Expressions, pages 327–407. D. Reidel Publishing Company, 1989.Google Scholar
  15. [RN95]
    Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern Approach, pages 241–243. Prentice Hall, 1995.Google Scholar
  16. [Ter95]
    Paolo Terenziani. Towards a causal ontology coping with the temporal constraints between causes and effects. International Journal for Human-Computer Studies, 43(5/6):847–863, 1995.CrossRefGoogle Scholar
  17. [vdVSM94]
    Paul E. van der Vet, Piet-Hein Speel, and Nicolaas J. I. Mars. The plinius ontology of ceramic materials. Workshop Notes ECAI’94 in Amsterdam, Workshop Comparison of Implemented Ontologies, pages 187–205, 1994.Google Scholar
  18. [WAB+92]
    W. Wahlster, E. André, S. Bandyopadhyay, W. Graf, and T. Rist. WIP: The Coordinated Generation of Multimodal Presentations from a Common Representation. In A. Ortony, J. Slack, and O. Stock, editors, Communication from an Artificial Intelligence Perspective: Theoretical and Applied Issues, pages 121–144. Springer-Verlag, New York, Berlin, Heidelberg, 1992.Google Scholar
  19. [Web97]
    Lars Webel. Modellierung eines Teilgebiets der Domäne Werkstoé für technische Produkte und Implementation in LOOM. Technical report, Otto-von-Guericke Universität Magdeburg, Institut für Informations-und Kommunikationssysteme, 1997.Google Scholar
  20. [Web98]
    L. Webel. Untersuchungen zur Modellierung von Substanzen. Diplomarbeit, Otto-von-Guericke Universität Magdeburg, 1998.Google Scholar
  21. [WL92]
    R. Weida and D. Litman. Terminological reasoning with constraint networks and an application to plan recognition. In Nebel, Swartout, and Rich, editors, Proceedings of Principles of Knowledge Representation and Reasoning (KR’92), 1992.Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Björn Höfling
    • 1
  • Thorsten Liebig
    • 2
  • Dietmar Rösner
    • 1
  • Lars Webel
    • 1
  1. 1.Otto-von-Guericke-Universität MagdeburgInstitut für Wissens- und SprachverarbeitungMagdeburgGermany
  2. 2.Abteilung Künstliche Intelligenz, Fakultät für InformatikUniversität UlmUlmGermany

Personalised recommendations