Towards deconvoluting the interaction of the Bacillus subtilis sporulation proteins SinR and SinI using tryptophan analogue incorporated proteins

  • D. J. Scott
  • S. Leejeerajumnean
  • J. A. Brannigan
  • R. J. Lewis
  • A. J. Wilkinson
  • J. G. Hoggett
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 113)


Sporulation in Bacillus subtilis is used as the strategy of last resort for survival of the organism and it is a very tightly controlled developmental process. One of the control checkpoints that must be overcome for sporulation to occur is the repression of sporulation genes by the protein SinR (13.5 kDa). This is done by binding of the anti-repressor SinI (6.5 kDa) to form a tightly bound heterodimer. To investigate the interaction of SinI with SinR in solution, an analytical ultracentrifuge study was undertaken. SinR was found to be a tetramer, whereas SinI was in a monomer/dimer equilibrium. Derivatives of both SinI and SinR, where the native tryptophan was replaced by the analogue 7-aza-tryptophan (7AW), were expressed and found to be as active as the wild-type proteins. The 7AW proteins have the property of having significant absorbance at 315 nm, thus allowing them to be monitored even in the presence of tryptophan containing proteins, making them ideal for studying protein/protein interactions.

Key words

Sporulation proteins Bacillus subtilis Tryptophan 7-Azatryptophan Analytical ultracentrifugation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Errington J (1993) Microbiol Rev 57: 1–33Google Scholar
  2. 2.
    Hoch JA (1993) Annu Rev Microbiol 47:441–465CrossRefGoogle Scholar
  3. 3.
    Gaur NK, Oppenheim J, Smith I (1991) J Bacteriol 173:678–686Google Scholar
  4. 4.
    Losick R, Stragier P (1992) Nature 355:601–604CrossRefGoogle Scholar
  5. 5.
    Lewis RJ, Brannigan JA, Offen WA, Smith I, Wilkinson AJ (1998) J Mol Biol 283:907–912CrossRefGoogle Scholar
  6. 6.
    Scott DJ, Ferguson AL, Buck M, Gallegos M-T, Pitt M, Hoggett JG (1999) Prog Colloid Polym Sci 113:212–215CrossRefGoogle Scholar
  7. 7.
    Ross JBA, Szabo AG, Hogue CWV (1997) Methods Enzymol 278:151–190CrossRefGoogle Scholar
  8. 8.
    Callaci S, Heyduk T (1998) Biochemistry 37:3312–3320CrossRefGoogle Scholar
  9. 9.
    Hogue CWV, Szabo AG (1993) Biophys Chem 48:159–169CrossRefGoogle Scholar
  10. 10.
    Soumillion P, Jespers L, Vervoort J, Fastrez J (1995) Protein Eng 8: 451–456CrossRefGoogle Scholar
  11. 11.
    Rusinova E, Ross JBA, Laue TM, Sowers LC, Senear DF (1997) Biochemistry 36:12994–13003CrossRefGoogle Scholar
  12. 12.
    Wong C-Y, Eftink MR (1998) Biochemistry 37:8947–8953CrossRefGoogle Scholar
  13. 13.
    Scott DJ, Leejeerajumnean S, Brannigan JA, Lewis RJ, Wilkinson AJ, Hoggett JG (1999) (Submitted to J Mol Biol)Google Scholar
  14. 14.
    Scott DJ, Ferguson AL, Buck M, Gallegos M-T, Pitt M, Hoggett JG (1999) (Submitted to Biochemical Journal)Google Scholar
  15. 15.
    Svensson H (1956) Opt Acta 3:164–183Google Scholar
  16. 16.
    Harding SE, Horton JC, Morgan PJ (1992) In: Harding SE, Rowe AJ, Horton JC (eds) Analytical ultracentrifugation in biochemistry and polymer science. Royal Society of Chemistry, Cambridge, pp 275–294Google Scholar
  17. 17.
    Cölfen H, Harding SE (1997) Eur Biophys J 25:333–346CrossRefGoogle Scholar
  18. 18.
    Wills PR, Jacobsen MP, Winzor DJ (1996) Biopolymers 38:119–130CrossRefGoogle Scholar
  19. 19.
    Winzor DJ, Jacobsen MP, Wills PR (1998) Biochemistry 37:2226–2233CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • D. J. Scott
    • 1
  • S. Leejeerajumnean
    • 2
  • J. A. Brannigan
    • 2
  • R. J. Lewis
    • 2
  • A. J. Wilkinson
    • 2
  • J. G. Hoggett
    • 1
  1. 1.Department of BiologyUniversity of YorkHeslingtonUK
  2. 2.York Structural Biology Laboratory Department of ChemistryUniversity of YorkUK

Personalised recommendations