Advertisement

The Calculus of Algebraic Constructions

  • Frédéric Blanqui
  • Jean-Pierre Jouannaud
  • Mitsuhiro Okada
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1631)

Abstract

This paper is concerned with the foundations of the Calculus of Algebraic Constructions (CAC), an extension of the Calculus of Constructions by inductive data types. CAC generalizes inductive types equipped with higher-order primitive recursion, by providing definitions of functions by pattern-matching which capture recursor definitions for arbitrary non-dependent and non-polymorphic inductive types satisfying a strictly positivity condition. CAC also generalizes the first-order framework of abstract data types by providing dependent types and higher-order rewrite rules. Full proofs are available at http://www.lri.fr/~blanqui/publis/rta99full.ps.gz.

Keywords

Function Symbol Recursive Call Proof Assistant Recursor Rule Algebraic Construction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Barbanera, M. Fernández, and H. Geuvers. Modularity of strong normalization in the algebraic-λ-cube. Journal of Functional Programming, 7(6), 1997.Google Scholar
  2. 2.
    H. Barendregt. Introduction to generalized type systems. Journal of Functional Programming, 1992.Google Scholar
  3. 4.
    F. Blanqui, J.-P. Jouannaud, and M. Okada. Inductive Data Type Systems, 1998.Google Scholar
  4. 5.
    V. Breazu-Tannen. Combining algebra and higher-order types. In Third IEEE Annual Symposium on Logic in Computer Science, pages 82–90. 1988.Google Scholar
  5. 6.
    V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic strong normalization. Theoretical Computer Science, 83 (1):3–28, June 1991.Google Scholar
  6. 7.
    T. Coquand. Pattern matching with dependent types. In B. Nordström, K. Pettersson, G. Plotkin, editors, Workshop on Types for Proofs and Programs, 1992.Google Scholar
  7. 8.
    T. Coquand and J. Gallier. A proof of strong normalization for the Theory of Constructions using a Kripke-like interpretation. 1st Intl. Workshop on Logical Frameworks. 1990.Google Scholar
  8. 9.
    T. Coquand and G. Huet. The Calculus of Constructions. Information and Computation, 76:96–120, 1988.CrossRefMathSciNetGoogle Scholar
  9. 10.
    T. Coquand and C. Paulin-Mohring. Inductively defined types. In P. Martin-Löf and G. Mints, editors, Proceedings of Colog’88, LNCS 417. Springer-Verlag, 1990.Google Scholar
  10. 11.
    C. Cornes. Conception d’un langage de haut niveau de representation de preuves: Récurrence par filtrage de motifs; Unification en présence de types inductifs primitifs; Synthése de lemmes d’inversion. PhD thesis, Université de Paris 7, 1997.Google Scholar
  11. 12.
    R. Di Cosmo and D. Kesner. Combining algebraic rewriting, extensional lambda calculi, and fixpoints. Theoretical Computer Science, 169(2):201–220, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 13.
    J. Courant. A module calculus for Pure Type Systems. TLCA’97.Google Scholar
  13. 14.
    G. Dowek, T. Hardin, and C. Kirchner. Theorem proving modulo. Technical Report 3400, INRIA, 1998.Google Scholar
  14. 15.
    J. Gallier. On Girard’s “Candidats de Réductibilité”. In P.-G. Odifreddi, editor, Logic and Computer Science. North Holland, 1990.Google Scholar
  15. 16.
    H. Geuvers. A short and flexible proof of strong normalization for the Calculus of Constructions. In P. Dybjer, B. Nordström, and J. Smith, editors, Selected Papers 2nd Intl. Workshop on Types for Proofs and Programs, TYPES’94, Bástad, Sweden, 6-10 June 1994, volume 996 of LNCS, pages 14–38. 1995.Google Scholar
  16. 17.
    J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1988.Google Scholar
  17. 18.
    J.-P. Jouannaud and M. Okada. Abstract Data Type Systems. Theoretical Computer Science, 173(2):349–391, February 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 19.
    J. W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems: introduction and survey. Theoretical Computer Science, 121(1-2):279–308, December 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 20.
    T. Nipkow. Higher-order critical pairs. In Proc. 6th IEEE Symp. Logic in Computer Science, Amsterdam, pages 342–349, 1991.Google Scholar
  20. 21.
    M. Okada. Strong normalizability for the combined system of the typed lambda calculus and an arbitrary convergent term rewrite system. In G. H. Gonnet, editor, Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation, pages 357–363. ACM Press, July 1989.Google Scholar
  21. 22.
    B. Werner. Une Théorie des Constructions Inductives. Thése, Université Paris 7, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Frédéric Blanqui
    • 1
  • Jean-Pierre Jouannaud
    • 1
  • Mitsuhiro Okada
    • 2
  1. 1.LRICNRS UMR 8623 et Université Paris-SudOrsay CedexFrance
  2. 2.Department of PhilosophyKeio UniversityTokyoJapan

Personalised recommendations