Advertisement

Jeopardy

  • Nachum Dershowitz
  • Subrata Mitra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1631)

Abstract

We consider functions defined by ground-convergent leftlinear rewrite systems. By restricting the depth of left sides and disallowing defined symbols at the top of right sides, we obtain an algorithm for function inversion.

Keywords

Normal Form Function Symbol Equational Theory Inversion Algorithm Inversion Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguzzi, G., Modigliani, U.: A criterion to decide the semantic matching problem. Proc. Intl. Conf. on Logic and Algebra, Italy (1995).Google Scholar
  2. 2.
    Christian, J.: Some termination criteria for narrowing and E-narrowing. Proc. 11th Intl. Conf. on Automated Deduction, Saratoga Springs, NY. Lecture Notes in Artificial Intelligence 607:582–588, Springer-Verlag, Berlin (1992).Google Scholar
  3. 3.
    Comon, H.: On unification of terms with integer exponents. Tech. Rep. 770, Université de Paris-Sud, Laboratoire de Réchérche en Informatique (1992).Google Scholar
  4. 4.
    Comon, H., Haberstrau, M., Jouannaud, J.P.: Decidable problems in shallow equational theories. Tech. Rep. 718, Université de Paris-Sud, Laboratoire de Réchérche en Informatique (1991).Google Scholar
  5. 5.
    Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In J. van Leeuwen, ed., Handbook of Theoretical Computer Science B: 243–320, North-Holland, Amsterdam (1990).Google Scholar
  6. 6.
    Dershowitz, N., Mitra, S.: Higher-order and semantic unification. Proc. 13th Conf. on Foundations of Software Technology and Theoretical Computer Science, Bombay, India. Lecture Notes in Artificial Intelligence 761:139–150, Springer-Verlag, Berlin (1993).Google Scholar
  7. 7.
    Dershowitz, N., Mitra, S., Sivakumar., G.: Decidable matching for convergent systems (Preliminary version). Proc. 11th Conference on Automated Deduction, Saratoga Springs, NY. Lecture Notes in Artificial Intelligence 607:589–602, Springer-Verlag, Berlin (1992).Google Scholar
  8. 8.
    Dershowitz, N., Plaisted, D. A.: Equational programming. In: J. E. Hayes, D. Michie, J. Richards, eds., Machine Intelligence 11: The logic and acquisition of knowledge, 21–56. Oxford Press, Oxford (1988).Google Scholar
  9. 9.
    Dershowitz, N., Reingold, E. M.: Calendrical Calculations. Cambridge University Press, Cambridge (1997).zbMATHGoogle Scholar
  10. 10.
    Fages, F., Huet, G.: Unification and matching in equational theories. Proc. 8th Colloq. on Trees in Algebra and Programming, L’Aquila, Italy. Lecture Notes in Computer Science 159:205–220, Springer-Verlag, Berlin (1983).Google Scholar
  11. 11.
    Heilbrunner, S., Hölldobler, S.: The undecidability of the unification and matching problem for canonical theories. Acta Informatica 24(2):157–171 (1987).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hullot, J.-M.: Canonical forms and unification. Proc. 5th Intl. Conf. on Automated Deduction, Les Arcs, France, Lecture Notes in Computer Science 87:318–334, Springer-Verlag, Berlin (1980).Google Scholar
  13. 13.
    Jacquemard, F.: Decidable approximations of term rewriting systems. Proc. 7th Intl. Conf. on Rewriting Techniques and Applications, New Brunswick, NJ. Lecture Notes in Computer Science 1103:362–376, Springer-Verlag, Berlin (1966).Google Scholar
  14. 14.
    Mitra, S.: Semantic unification for convergent systems. Ph.D. thesis, Dept. of Computer Science, University of Illinois, Urbana, IL, Tech. Rep. UIUCDCS-R-94-1855 (1994).Google Scholar
  15. 15.
    Narendran, P., Pfenning, F., Statman, R.: On the unification problem for Cartesian closed categories. J. Symbolic Logic 62(2):636–647 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Nieuwenhuis, R.: Decidability and complexity analysis by basic paramodulation. Information and Computation 147:1–21 (1998).Google Scholar
  17. 17.
    Plaisted, D. A.: Semantic confluence tests and completion methods. Information and Computation 65:182–215 (1985).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Nachum Dershowitz
    • 1
  • Subrata Mitra
    • 2
  1. 1.Department of Computer ScienceTel-Aviv University Ramat AvivTel-AvivIsrael
  2. 2.Enterprise Component TechnologyBangaloreIndia

Personalised recommendations