Two-way finite state transducers and monadic second-order logic

  • Joost Engelfriet
  • Hendrik Jan Hoogeboom
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1644)


Deterministic two-way finite state transductions are exactly the mso definable string transductions. Nondeterministic mso definable string transductions equal compositions of nondeterministic two-way finite state transductions that have the finite visit property. Both families of mso definable string transductions are characterized in terms of Hennie machines.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.-C. Birget, Two-way automata and length-preserving homomorphisms, MST 29 (1996) 191–226.zbMATHMathSciNetGoogle Scholar
  2. 2.
    J.R. Büchi, Weak second-order arithmetic and finite automata, Zeitschrift für Mathematik, Logik und Grundlagen der Mathematik 6 (1960) 66–92.zbMATHCrossRefGoogle Scholar
  3. 3.
    M.P. Chytil, V. Jákl, Serial composition of 2-way finite-state transducers and simple programs on strings, in: 4th ICALP, LNCS vol. 52, Springer Verlag, 1977, pp. 135–147.Google Scholar
  4. 4.
    B. Courcelle, The monadic second-order logic of graphs V: on closing the gap between definability and recognizability, TCS 80 (1991) 153–202.Google Scholar
  5. 5.
    B. Courcelle, Monadic second-order definable graph transductions: a survey, TCS 126 (1994) 53–75.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    B. Courcelle, The expression of graph properties and graph transformations in monadic second-order logic, in: Handbook of graph grammars and computing by graph transformation vol. 1 (G. Rozenberg, ed.), World Scientific Publishing Co., 1997, pp. 313–400.Google Scholar
  7. 7.
    J. Engelfriet, Three hierarchies of transducers, MST 15 (1982) 95–125.zbMATHMathSciNetGoogle Scholar
  8. 8.
    J. Engelfriet, Context-free graph grammars, in: A. Salomaa (eds.), Handbook of Formal Languages, vol. 3: Beyond Words, Springer Verlag, 1997 [17]}, pp. 125–213.Google Scholar
  9. 9.
    J. Engelfriet, V. van Oostrom, Logical description of context-free graph-languages, JCSS 55 (1997) 489–503.Google Scholar
  10. 10.
    S.A. Greibach, Visits, crosses, and reversals for nondeterministic off-line machines, Inf. Control 36 (1978) 174–216.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    S.A. Greibach, One way finite visit automata, TCS 6 (1978) 175–221.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    S.A. Greibach, Hierarchy theorems for two-way finite state transducers, Acta Inf. 11 (1978) 89–101.zbMATHMathSciNetGoogle Scholar
  13. 13.
    F.C. Hennie, One-tape, off-line Turing machine computations, Inf. Control 8 (1965) 553–578.CrossRefMathSciNetGoogle Scholar
  14. 14.
    J.E. Hopcroft, J.D. Ullman, An approach to a unified theory of automata, The Bell System Technical Journal 46 (1967) 1793–1829.MathSciNetzbMATHGoogle Scholar
  15. 15.
    D. Kiel, Two-way a-transducers and AFL, JCSS 10 (1975) 88–109.zbMATHMathSciNetGoogle Scholar
  16. 16.
    V. Rajlich, Bounded-crossing transducers, Inf. Control 27 (1975) 329–335.CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    G. Rozenberg, A. Salomaa (eds.), Handbook of Formal Languages, vol. 3: Beyond Words, Springer Verlag, 1997.Google Scholar
  18. 18.
    D. Seese, Interpretability and tree automata: a simple way to solve algorithmic problems on graphs closely related to trees, in: Tree Automata and Languages (M. Nivat, A. Podelski, eds.), Elsevier Science Publishers, 1992, pp. 83–114.Google Scholar
  19. 19.
    W. Thomas, Languages, automata, and logic, in: A. Salomaa (eds.), Handbook of Formal Languages, vol. 3: Beyond Words, Springer Verlag, 1997 [17]}, pp. 389–455.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Joost Engelfriet
    • 1
  • Hendrik Jan Hoogeboom
  1. 1.Institute of Computer ScienceLeiden UniversityLeidenThe Netherlands

Personalised recommendations