Fuzzy Clustering Based on Modified Distance Measures

  • Frank Klawonn
  • Annette Keller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1642)


The well-known fuzzy c-means algorithm is an objective function based fuzzy clustering technique that extends the classical k-means method to fuzzy partitions. By replacing the Euclidean distance in the objective function other cluster shapes than the simple (hyper-)spheres of the fuzzy c-means algorithm can be detected, for instance ellipsoids, lines or shells of circles and ellipses. We propose a modified distance function that is based on the dot product and allows to detect a new kind of cluster shape and also lines and (hyper-)planes.


Distance Function Data Vector Fuzzy Cluster Membership Degree Fuzzy Partition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bezdek, J. C.: A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 2 (1980) 1–8.zbMATHCrossRefGoogle Scholar
  2. 2.
    Bezdek, J. C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981).zbMATHGoogle Scholar
  3. 3.
    Bezdek, J. C., Hathaway, R. H., Sabin, M. J., Tucker, W. T.: Convergence Theory for Fuzzy c-Means: Counterexamples and Repairs. IEEE Trans. Systems, Man, and Cybernetics 17 (1987) 873–877.zbMATHGoogle Scholar
  4. 4.
    Bock, H. H.: Clusteranalyse mit unscharfen Partitionen. In: Bock, H. H. (ed.). Klassi fikation und Erkenntnis: Vol. III: Numerische Klassifikation. INDEKS, Frankfurt (1979), 137–163.Google Scholar
  5. 5.
    Davé, R. N.: Fuzzy Shell Clustering and Application to Circle Detection in Digital Images. Intern. Journ. General Systems 16 (1990) 343–355.CrossRefGoogle Scholar
  6. 6.
    Davé, R. N.: Characterization and Detection of Noise in Clustering. Pattern Recognition Letters 12 (1991) 657–664.CrossRefGoogle Scholar
  7. 7.
    Davé, R. N.: On Generalizing Noise Clustering Algorithms. In: Proc. 7th Intern. Fuzzy Systems Association World Congress (IFSA’97) Vol. III, Academia, Prague (1997), 205–210.Google Scholar
  8. 8.
    Gustafson, D. E., Kessel, W. C.: Fuzzy Clustering with a Fuzzy Covariance Matrix. Proc. IEEE CDC, San Diego (1979), 761–766.Google Scholar
  9. 9.
    Höppner, F. Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. Wiley, Chichester (1999).zbMATHGoogle Scholar
  10. 10.
    Klawonn, F., Keller, A.: Fuzzy Clustering with Evolutionary Algorithms. Intern. Journ. of Intelligent Systems 13 (1998) 975–991.CrossRefGoogle Scholar
  11. 11.
    Krishnapuram, R., Frigui, H., Nasraoui, O.: Fuzzy and Possibilistic Shell Clustering Algorithms and Their Application to Boundary Detection and Surface Approximation-Part 1 & 2. IEEE Trans. on Fuzzy Systems 3 (1995) 29–60.CrossRefGoogle Scholar
  12. 12.
    Krishnapuram, R., Keller, J.: A Possibilistic Approach to Clustering. IEEE Trans. Fuzzy Systems 1 (1993) 98–110.CrossRefGoogle Scholar
  13. 13.
    Kruse, R., Gebhardt, J., Klawonn, F.: Foundations of fuzzy systems. Wiley, Chichester (1994).Google Scholar
  14. 14.
    Nauck, D., Klawonn, F., Kruse, R.: Neuro-Fuzzy Systems. Wiley, Chichester (1997).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Frank Klawonn
    • 1
  • Annette Keller
    • 2
  1. 1.Department of Electrical Engineering and Computer ScienceOstfriesland University of Applied SciencesEmdenGermany
  2. 2.Institute for Flight GuidanceGerman Aerospace CenterBraunschweigGermany

Personalised recommendations