Recognition—Triggered Response and the View—Graph Approach to Spatial Cognition

  • Hanspeter A. Mallot
  • Sabine Gillner
  • Sibylle D. Steck
  • Matthias O. Franz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1661)


The simplest representation of space allowing for spatial cognition in biological and artificial systems is a graph; the nodes of this graph contain local position information (views) characterizing certain certain places while its links are labeled with movements or actions leading from one view to the next. In this paper, we review recent theoretical and psychological work on view-graph representations. In particular, we will focus on the transition from stereotyped “recognition-triggered response” to a graph-like cognitive map where the recognition of a view allows to choose one of several responses. We will present psychological evidence from experiments using virtual reality indicating that human subjects do make use of simple view-movement associations without recognizing places. This mechanism is not restricted to navigation in mazes but can be extended to large-scale open environments by means of an additional guidance mechanism. As compared to more map-like approaches such as occupancy grids or survey-maps, the view-graph is less computationally expensive and can easily be adapted to the coarseness of spatial knowledge.


Recognition-triggered response graph theory topological navigation cognitive maps virtual reality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bülthoff, H. H., Foese-Mallot, B. M., Mallot, H. A.: Virtuelle Realität als Methode der modernen HIrforschung). In Krapp, H., Wägenbauer, T. editors, Künstliche paradise — Virtuelle Realitäten. (Dekünstliche Räurne in Literatur-, Social-und Naturunssenschaften), page 241–260. Wilhelm Fink Verlag, München, 1997.Google Scholar
  2. Cartwright, B. A., Collett, T. S.: How honey bees use landmarks to guide their return to a food source. Nature, 295:560–564, 1982.CrossRefGoogle Scholar
  3. Cartwright, B. A., Collett, T. S.: Landmark maps for honeybees. Biological Cybernetics, 57:85–93, 1987.CrossRefGoogle Scholar
  4. Cheng, K.: A purely geometric module in the rat’s spatial representation. Cognition, 23:149–178, 1986.CrossRefGoogle Scholar
  5. Collett, T.: Landmark learning and guidance in insects. Philosophical Transactions of the Royal Society London B, 337:295–303, 1992.CrossRefGoogle Scholar
  6. Franz, M. O., Mallott, H. A.: Biomimetic robot navigation. Robotics and Autonomous Systems, 1999, in press.Google Scholar
  7. Franz, M. O., Schölkopf, B., Mallott, H. A., Bülthoff, H. H.: Learning view graphs for robot navigation. Autonomous Robots, 5:111–125, 1998.CrossRefGoogle Scholar
  8. Franz, M. O., Schölkopf, B., Mallott, H. A., Bülthoff, H. H.: Where did I take that snapshot? Scene-based homing by image matching. Biological Cybernetics, 79:191–202, 1998.zbMATHCrossRefGoogle Scholar
  9. Gillner, S.: tUntersuchungen zur bildbasierten Navigationsleistung in virtuellen Welten). PhD thesis, Fak. Biologie, Universität Tübingen, 1997.Google Scholar
  10. Gillner, S., Mallott, H. A.: Navigation and acquisition of spatial knowledge in a virtual maze. JOurnal of Cognitive Neuroscience, 10:445–463, 1998.CrossRefGoogle Scholar
  11. Hermer, L., Spelke, E. S.: A geometric process for spatial reorientation in young children. Nature, 370:57–59, 1994.CrossRefGoogle Scholar
  12. Jacobs, W. J., Thomas, K. G.FR., Laurance, H. E., Nadel, L.: Place learning in virtual space II: Topgraphical relations as one dimension of stimulus control. Learning and Motivation, 29:288–308, 1998.CrossRefGoogle Scholar
  13. Kohomen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43:59–69, 1982.CrossRefGoogle Scholar
  14. Kühn, A.: Die Orientierung der Tiere irn Raum). Gustav Fischer Verlag, Jena, 1919.Google Scholar
  15. Kuipers, B. J., Byun, Y.-T.: A robot exploration and mapping strategy based on a semantic hierarchy of spatial representation. Journal of Robotics and Autonomous Systems, 8:47–63, 1991.CrossRefGoogle Scholar
  16. Mallott, H. A., Bülthoff, H. H., Georg, P., Schölkopf, B., Yasuhara, K.: View-based cognitive map learning by an autonomous robot. In Proceedings of the International Conference on Artificial Neural Networks (ICANN)’ 95 and Neuro-Nimes’95, volume II, page 381–386, Paris, 1995. EC2 & Cie.Google Scholar
  17. Mallott, H. A., Gillner, S.: View-based vs. place-Dbased navigation: what is recognized in recognition-triggered responses? Technical Report 64, Max-Planck-Institut für biologische kybernetic, Tübingen, 1998.Google Scholar
  18. Maurer, R., Séguinot, V.: What is modelling for? A critical review of the models of path integration. Journal of theoretical Biology, 175:457–475, 1995.CrossRefGoogle Scholar
  19. Mecklenbräuker, S., Wippich, W., Wagener, M., Saathoff, J. E.: Spatial information and actions. In Freksa, C., Wender, K. F., editors, Spatial cognition: an interdisciplinary approach to representing and processing spatial knowledge, number 1404 in Lecture Notes in Computer Sciense, page 39–61. Springer Verlag, Berlin, 1998.Google Scholar
  20. Merkel, F. W.: Orientierung im Tierreich.). Gustav Fischer Verlag, Stuttgart, New York, 1980.Google Scholar
  21. O’Keefe, J., Nadel, N.: The hippocampus as a cognitive map. Clarendon, Oxford, England, 1978.Google Scholar
  22. Poucet, B.: Spatial cognitive maps in animals: New hypothesis on their structure and neural mechanism. Psychological Review, 100:163–182, 1993.CrossRefGoogle Scholar
  23. Schölkopf, B., Mallott, H. A.: View-based cognitive mapping and path planning. Adaptive Behavior, 3:311–348, 1995.CrossRefGoogle Scholar
  24. Schweizer, K., Herrmann, T., Janzen, G., Katz, S.: The route direction effect and its constraints. In Freksa, C., Habel, C., Wender, K. F., editors, Spatial cognition: an interdisciplinary approach to representing and processing spatial knowledge, number 1404 Lecture Notes in Computer Science, page 19–38. Springer Verlag, Berlin, 1998.Google Scholar
  25. Steck, H. D., Mallott, H. A.: The role of global and local landmarks in virtual environment navigation. Technical Report 63, Max-Planck-Institut für biologische Kybernetik, Tübingen, 1998.Google Scholar
  26. Trullier, O. Wiener, S. L., Berthoz, A., Meyer, J.-A.: Biologically based artificial navigation systems: A Review and Prospects. Progress in Neurobiology, 51:483–544, 1997.CrossRefGoogle Scholar
  27. van Veen, H.A.H.C., Distler, H. K., Braun, S.J., Bülthoff, H. H.: Navigating through a virtual city: Using virtual reality technology to study human action and perception. Future Generation Computer System, 14:231–242, 1998.CrossRefGoogle Scholar
  28. Wagner, K.: Graphentheorie. Bibliographisches Institut, Mannheim, Wien, Zürich, 1970.zbMATHGoogle Scholar
  29. Wehner, R., Menzel, R.: Do insects have cognitive maps? Anual Review of Neuroscience, 13:403–414, 1990.Google Scholar

Copyright information

© Springer-Verlag berlin Heidelberg 1999

Authors and Affiliations

  • Hanspeter A. Mallot
    • 1
  • Sabine Gillner
    • 2
  • Sibylle D. Steck
    • 1
  • Matthias O. Franz
    • 3
  1. 1.Max-Planck-Institut fü biologische KyberneticTübingenGermany
  2. 2.Abteilung Unfallchirugische Forschung und BiomechanikUniversität UlmUlmGermany
  3. 3.DaimlerChrysler ResearchDaimlerChrysler ResearchUlmGermany

Personalised recommendations