Advertisement

On Registering Front- and Backviews of Rotationally Symmetric Objects

  • Robert Sablatnig
  • Martin Kampel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1689)

Abstract

Every archaeological excavation must deal with a vast number of ceramic fragments. The documentation, administration and scienfitic processing of these fragments represent a temporal, personnel, and financial problem.We are developing a documentation system for archaeological fragments based on their profile, which is the cross-section of the fragment in the direction of the rotational axis of symmetry. Hence the position of a fragment (orientation) on a vessel is important. To achieve the profile, a 3d-representation of the object is necessary. This paper shows an algorithm for registration of the front and the back views of rotationally symmetric objects without using corresponding points. The method proposed uses the axis of rotation of fragments to bring two range images into alignment.

Keywords

Rotational Axis Range Image Iterative Close Point Registration Error Iterative Close Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Altschuler and B. Altschuler. Measuring Surfaces Space-coded by a Laser-projected Dot Matrix. In Imaging Applications for Automated Industrial Inspection, SPIE, volume 182, 1979.Google Scholar
  2. 2.
    P.J. Besl and N.D. McKay. A Method for Registration of 3-D Shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence, 14(2), 1992.Google Scholar
  3. 3.
    B. Bhanu. Reprsentation and Shape Matching of 3d Objects. IEEE Trans. on Pattern Analysis and Machine Intelligence, 6(3), 1984.Google Scholar
  4. 4.
    Y. Chen and G. Medioni. Object Modelling by Registration of Multiple Range Images. Image and Vision Computing, 10(3):145–155, April 1992.CrossRefGoogle Scholar
  5. 5.
    C. Dorai, G. Wang, A.K. Jain, and C. Mercer. From Images to Models: Automatic 3D Object Model Construction from Multiple Views. In 13th. International Conference on Pattern Recognition, Vienna, volume I, Track A, pages 770–774, 1996.CrossRefGoogle Scholar
  6. 6.
    C. Dorai, G. Wang, A.K. Jain, and C. Mercer. Registration and Integration of Multiple Object Views for 3D Model Construction. IEEE Trans. on Pattern Analysis and Machine Intelligence, 20(1):83–89, January 1998.CrossRefGoogle Scholar
  7. 7.
    I. Gathmann. ARCOS, ein Gerät zur automatischen bildhaften Erfassung der Form von Keramik. FhG — Berichte, (2):30–33, 1984.Google Scholar
  8. 8.
    Radim Halíř. Estimation of Rotation of Fragments of ArchaeologicalPotter. In W. Burger and M. Burge, editors, 21 th Workshop of the Oeagm, pages 175–184, Hallstatt, Austria, May 1997.Google Scholar
  9. 9.
    S. Inokuchi, K. Sato, and F. Matsuda. Range-imaging System for 3-d Object Recognition. In 7th. International Conference on Pattern Recognition, Montreal, pages 806–808, 1984.Google Scholar
  10. 10.
    A. Kak and K. Boyer. Color Encoded Structured Light for Rapid Active Ranging. IEEE Trans. on Pattern Analysis and Machine Intelligence, 9:14–28, 1987.CrossRefGoogle Scholar
  11. 11.
    D. Marr. Vision. Freeman, 1982.Google Scholar
  12. 12.
    E. Oja. Subspace Methods of Pattern Recognition. John Wiley, 1983.Google Scholar
  13. 13.
    E. Oja, L. Xu, and C.Y. Suen. Modified Hebian Learning for Curve and Surface Fitting. Neural Networks, 5(3):441–457, 1992.CrossRefGoogle Scholar
  14. 14.
    C. Orton, P. Tyers, and A. Vince. Pottery in Archaeology, 1993.Google Scholar
  15. 15.
    R. Sablatnig and C. Menard. Computer based Acquisition of Archaeological Finds: The First Step towards Automatic Classification. In P. Moscati/ S. Mariotti, editor, Proceedings of the 3rd International Symposium on Computing and Archaeology, Rome, volume 1, pages 429–446, 1996.Google Scholar
  16. 16.
    C. Steckner. Das SAMOS Projekt. Archäologie in Deutschland, (Heft 1):16–21, 1989.Google Scholar
  17. 17.
    R. Szeliski. Image Mosaicing for Tele-Reality Applications. In 2nd. Workshop on Applications of Computer Vision, Sarasota, pages 44–53, 1994.Google Scholar
  18. 18.
    K. Sakaue T. Masuda and N. Yokoya. Registration and Integration of Multiple Range Images for 3D Model Construction. In 13th. International Conference on Pattern Recognition, Vienna, volume I, Track A, pages 879–883, 1996.Google Scholar
  19. 19.
    B.C. Vemuri and J.K. Aggarwal. 3D Model Construction from Multiple Views using Range and Intensity Data. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages 435–437, 1986.Google Scholar
  20. 20.
    F. Wahl. A Coded Light Approach for 3dimensional (3D) Vision. Technical Report 1452, IBM, 1984. Research Report RZ.Google Scholar
  21. 21.
    P. Waldhaeusl and K. Kraus. Photogrammetrie für die Archäologie. In Kandler M., editor, Lebendige Altertumswissenschaft: Festgabe zur Vollendung des 70. Lebensjahres von Hermann Vetters dargebracht von Freunden, Schülern und Kollegen, pages 423–427, Wien, 1985.Google Scholar
  22. 22.
    S. Ben Yacoub and C. Menard. Robust Axis Determination for Rotational Symmetric Objects out of Range data. In W. Burger and M. Burge, editors, 21 th Workshop of the Oeagm, pages 197–202, Hallstatt, Austria, May 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Robert Sablatnig
    • 1
  • Martin Kampel
    • 1
  1. 1.Pattern Recognition and Image Processing Group, Institute for Computer Aided AutomationVienna University of TechnologyViennaAustria

Personalised recommendations