A Spatio-Temporal Taxonomy for the Representation of Spatial Set Behaviours

  • Marius Thériault
  • Christophe Claramunt
  • Paul Y. Villeneuve
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1678)


Currently, most models proposed for spatio-temporal databases describe changes that involve independent entities. However, many dynamic applications need new models to relate evolution of spatial entities linked by common properties and constraints or relationships. In transportation GIS, an activity-event matrix describes individual entity behaviours, travel activities and routes on a transportation network. On the other hand, modelling disaggregate travel choices behaviour for several entities implies the identification of new mechanisms to describe the evolution of their joint spatial distribution. This paper introduces and describes the concept of sets of geographical entities needed for the analysis of travel behaviour in metropolitan areas. We propose a taxonomy for the description of the evolution of entity sets in space and the selection of appropriate statistical indexes to analyse their geographical patterns. Such a framework may become a reference for the development of spatio-temporal database representations of spatial patterns evolution.


Convex Polygon Travel Behaviour Geographic Information System Spatial Entity Geographical Entity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdel-Aty, M., R. Kitamura, P. Jovanis, R. Reddy and K. Vaughn, 1995. New approach to route choice data collection: Multiphase, computer-aided telephone interview panel surveys using geographical information systems data base. Transportation Research Record 1493, TRB, NRC, Washington, D. C., 159–169.Google Scholar
  2. 2.
    Abraham, T. and Roddick, J. F., 1999. Survey of Spatio-Temporal Databases. Geoinformatica, 3(2), pp. 61–99.CrossRefGoogle Scholar
  3. 3.
    Anselin, L. and A. Getis, 1992. Spatial statistical analysis and geographic information systems. The Annals of Regional Science, 26:19–33.CrossRefGoogle Scholar
  4. 4.
    Ben-Akiva, M. E. and J. L. Bowman, 1995. Activity-based disaggregate travel demand model system with daily activity schedules. in Proceedings of the Conference on Activity-Based Approaches: Activity Scheduling and the Analysis of Activity Patterns, Eindhoven, The Netherlands.Google Scholar
  5. 5.
    Bestougeff, H., and Ligozat, G., 1992, Logical Tools for Temporal Knowledge Representation, Ellis Horwood, United-Kingdom, 311p.Google Scholar
  6. 6.
    Boots, B. N. and A. Getis, 1988. Point Pattern Analysis. Scientific Geography Series, Sage, Newbury Park.Google Scholar
  7. 7.
    Cheng, T. and M. Molenaar, 1998. A process-oriented spatio-temporal data model to support physical environmental modeling, in Proceedings of the 8 th International Symposium on Spatial Data Handling, Vancouver, July 11-15, 418–430.Google Scholar
  8. 8.
    Cheylan, J. P. and S. Lardon, 1993. Toward a conceptual model for the analysis of spatiotemporal processes. In Spatial Information Theory, Frank, A. and Campari, I. Eds., Springer-Verlag, Berlin, 158–176.Google Scholar
  9. 9.
    Claramunt, C. and M. Thériault, 1995. Managing time in GIS: An event-oriented approach. In Recent Advances in Temporal Databases, Clifford, J. and Tuzhilin, A. Eds., Berlin, Springer-Verlag, 23–42.Google Scholar
  10. 10.
    Claramunt, C. and M. Thériault, 1996. Toward semantics for modelling spatio-temporal processes within GIS. In Advances in GIS Research, Kraak, M. J. and Molenaar, M. Eds., Delft, Taylor & Francis, 47–63.Google Scholar
  11. 11.
    Claramunt, C., M. Thériault and C. Parent, 1997. A qualitative representation of evolving spatial entities in two-dimensional topological spaces. In Innovations in GIS V, Carver S. Ed., London, Taylor & Francis, 119–129.Google Scholar
  12. 12.
    Clementini, E., P. Di Felice and P. van Oosterom, 1993. A small set of topological relationships suitable for end-user interaction. In Advances in Spatial Databases, D. J. Abel and B. C. Ooi Eds., Berlin, Springer-Verlag, 277–295.Google Scholar
  13. 13.
    Cui, Z., A. Cohn and D. Randell, 1993. Qualitative and topological relationships in spatial databases. In Advances in Spatial Databases, Abel D. and Ooi B. Eds., LNCS 692, Springer-Verlag, Berlin, 293–315.Google Scholar
  14. 14.
    Doherty, S. T. and E. J. Miller, 1997. Tracing the household activity scheduling process using one-week computer-based survey. In Proceedings of the Eight Meeting of the International Association of Travel Behaviour Research, Austin, Texas.Google Scholar
  15. 15.
    Egenhofer, M., 1991. Reasoning about binary topological relations. In Advances in Spatial Databases, edited by O. Günther and H.-J. Schek, Berlin: Springer-Verlag, 143–160.Google Scholar
  16. 16.
    Frank, A. U., 1996. Socio-economic units: Their life and motions. in GIS Data European Workshop, Nafplion, Greece.Google Scholar
  17. 17.
    Galton, A., 1995. Towards a qualitative theory of movement. In Spatial Information Theory: A Theoretical Basis for GIS, Frank, A. U. and Kuhn, W. Eds., Berlin, Springer-Verlag, 377–396.Google Scholar
  18. 18.
    Getis, A. and J. K. Ord, 1992. The analysis of spatial association by use of distance statistics. Geographical Analysis, 24-3: 206.Google Scholar
  19. 19.
    Golledge, R. G., 1998. The relationship between geographical information systems and disaggregate behavioral travel modeling, Geographical Systems, 5: 9–17.Google Scholar
  20. 20.
    Golledge, R. G., M. P. Kwan and T. Gärling, 1994. Computational process modeling of household travel decision using a geographical information system. Papers in Regional Science, 73-2: 99–117.CrossRefGoogle Scholar
  21. 21.
    Golledge, R. and M. Egenhofer, 1998. Guest editors’ preface, GIS and disaggregate behavioral travel modeling. Special issue of Geographical Systems, 5: 1–7.Google Scholar
  22. 22.
    Goodchild, M. F., 1998. Geographic information systems and disaggregate transportation modelling. Geographical Systems, 5: 19–44.Google Scholar
  23. 23.
    Goodchild, M. F., B. Klinkenberg and D. G. Janelle, 1993. A factorial model of aggregate spatio-temporal behavior: application to the diurnal cycle. Geographical Analysis, 25-4: 277–294.CrossRefGoogle Scholar
  24. 24.
    Goodchild, M. F., L. T. Steyaert, B. O. Parks et al. Eds., 1996. GIS and Environmental Modelling: Progress and Research Issues, Fort Collins, GIS World Books.Google Scholar
  25. 25.
    Greaves, S. and P. Stopher, 1998. A synthesis of GIS and activity-based travel-forecasting. Geographical Systems, 5: 59–89.Google Scholar
  26. 26.
    Griffith, D. A., 1993. Advanced spatial statistics for analysing and visualising georeferenced data. International Journal of Geographical Information Systems, 7(2): 107–123.CrossRefGoogle Scholar
  27. 27.
    Hägerstrand, T., 1967. Innovation Diffusion as a Spatial Process, Chicago, The University of Chicago Press.Google Scholar
  28. 28.
    Haynes, K. E. and A. S. Fotheringham, 1984. Gravity and Spatial Interaction Models. Scientific Geography Series, Newbury Park, Sage.Google Scholar
  29. 29.
    Hornsby, K. and M. Egenhofer, 1997. Qualitative representation of change. In Proceedings of the Conference on Spatial Information Theory COSIT’97, Frank, A.U. and Mark, D. Eds., Springer-Verlag, LNCS 1329.Google Scholar
  30. 30.
    Janelle, D. G., B. Klinkenberg and M. F. Goodchild, 1998. The temporal ordering of urban space and daily activity patterns for population role groups. Geographical Systems, 5: 117–137.Google Scholar
  31. 31.
    Langran, G., 1992. Time in Geographic Information Systems, London, Taylor & Francis.Google Scholar
  32. 32.
    Lee, H. and Z. Kemp, 1998. Supporting complex spatiotemporal analysis in GIS. In S. Carver Ed., Innovations in GIS 5, London, Taylor & Francis, 151–160.Google Scholar
  33. 33.
    Levine, N., 1996. Spatial statistics and GIS: Software tools to quantify spatial patterns. Journal of the American Planning Association, 62(3): 381–391.CrossRefGoogle Scholar
  34. 34.
    Mahmassani, H., T. Joseph and R. C. Jou, 1993. Survey approach for study of urban commuter choice dynamics. Transportation Research Record 1412, TRB, National Research Council, Washington, D. C., 80–89.Google Scholar
  35. 35.
    Morril, R., G. L. Gaile and G. I. Thrall, 1988. Spatial Diffusion. Scientific Geography Series, Newbury Park, Sage.Google Scholar
  36. 36.
    Odland, J., 1988. Spatial Autocorrelation, Scientific Geography Series, Sage, Newbury Park.Google Scholar
  37. 37.
    Openshaw, S., 1994, Two exploratory space-time-attribute pattern analysers relevant to GIS. In Spatial Analysis and GIS, Fotheringham, S. and Rogerson, P. Eds., London, Taylor & Francis, 83–104.Google Scholar
  38. 38.
    Peuquet, D. J., 1994. It’s about time: A conceptual framework for the representation of temporal dynamics in geographic information systems. Annals of the Association of the American Geographers, 84(3): 441–461.CrossRefGoogle Scholar
  39. 39.
    Peuquet, D. J., and N. Duan, 1995. An Event-based spatiotemporal data model (ESTDM) for temporal analysis of geographical data. International Journal of Geographical Information Systems, 9(1): 7–24.CrossRefGoogle Scholar
  40. 40.
    Quiroga, C. A. and D. Bullock, 1999. Travel time information using GPS and dynamic segmentation techniques. Proceedings of the Transportation Research Board 78 th Annual Meeting, Washington D. C., January 10-14, 1999.Google Scholar
  41. 41.
    Shibasiki, R. and S. Huang, 1996. Spatio-temporal interpolation by integrating observational data and a behavioral model. In Advances in GIS Research, Kraak, M. J. and Molenaar, M. Eds., Delft, Taylor & Francis, 655–666.Google Scholar
  42. 42.
    Spear, B. D. and T. R. Lakshmanan, 1998. The role of GIS in transportation planning and analysis. Geographical Systems, 5: 45–58.Google Scholar
  43. 43.
    Takeyama, M. and H. Couclelis, 1997. Map dynamics: Integrating cellular automata and GIS through geo-algebra. International Journal Geographical Information Science, 11(1): 73–91.CrossRefGoogle Scholar
  44. 44.
    Thériault, M. and F. Des Rosiers, 1995. Combining hedonic modelling, GIS and spatial statistics to analyse the residential markets in the Quebec Urban Community. In Proceedings of the Joint European, March 26-31, EGIS Foundation, The Hague, The Netherlands, 2:131–136.Google Scholar
  45. 45.
    Thériault, M., D. Leroux and M. H. Vandersmissen, 1998. Modelling travel route and time within GIS: its use for planning. In A. Bargiela and E. Kerckhoffs eds. Simulation Technology Science and Art. Proceedings of the 10 th European Simulation Symposium, The Nottingham-Trent University, October 26-28, Society for Computer Simulation International, Ghent, Belgium, 402–407.Google Scholar
  46. 46.
    Thill, J. C. and J. L. Horowitz, 1997. Travel-time constraints on destination choice sets. Geographical Analysis, 29-2: 108–123.SCrossRefGoogle Scholar
  47. 47.
    Upton, G. J. G. and B. Fingleton, 1989. Spatial Data Analysis by Example, John Wiley & Sons, Chichester.zbMATHGoogle Scholar
  48. 48.
    Wolf, J., S. Hallmark, M. Oliveira, R. Guensler and W. Sarasua, 1999. Accuracy issues with route choice data collection using GPS. Proceedings of the Transportation Research Board 78 th Annual Meeting, Washington, D. C., January 10-14, 1999.Google Scholar
  49. 49.
    Yuan, M., 1998. Representing spatiotemporal processes to support knowledge discovery in GIS databases. In Proceedings of the 8 th International Symposium on Spatial Data Handling, Vancouver, July 11-15.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Marius Thériault
    • 1
  • Christophe Claramunt
    • 2
  • Paul Y. Villeneuve
    • 1
  1. 1.Laval UniversityPlanning and Development Research CentreQuebecCanada
  2. 2.The Nottingham Trent UniversityDepartment of ComputingNottinghamUK

Personalised recommendations