Advertisement

Abstract

We separate the class of languages accepted by deterministic two-way one counter automata from the languages accepted by two-dimensional rebound automata. We also discuss the relationship of the classes to languages accepted by rebound automata with k-dimensional input for k ≥ 3. Further we answer the question whether the classes of languages accepted by deterministic or nondeterministic rebound automata are closed under length-preserving homomorphisms negatively.

Keywords

Finite Automaton Input String Input Length Deterministic Finite Automaton Input Tape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Blum and C. Hewitt. Automata on a 2-dimensional tape. In Proceedings of the 8th Annual Symposium on Switching and Automata Theory, Austin, 1967, pages 155–160, 1967.Google Scholar
  2. 2.
    P. Ďuriš and Z. Galil. Fooling a two way automaton or one pushdown store is better than one counter for two way machines. Theoretical Computer Science, 21:39–53, 1982.CrossRefMathSciNetGoogle Scholar
  3. 3.
    J. Hromkovič and G. Schnitger. Communication complexity and sequential computation. In I. Prívara and P. Ružička, editors, Proceedings of the 22nd Symposium on Mathematical Foundations of Computer Science (MFCS), Bratislava, 1997, number 1295 in Lecture Notes in Computer Science, pages 71–84, Berlin-Heidelberg-New York, 1997. Springer.Google Scholar
  4. 4.
    K. Inoue and I. Takanami. A survey of two-dimensional automata theory. Information Sciences, 55:99–121, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    M. L. Minsky. Recursive unsolvability of Post’s problem of “tag” and other topics in theory of Turing machines. Annals of Mathematics, 74:437–455, 1961.CrossRefMathSciNetGoogle Scholar
  6. 6.
    B. Monien. Two-way multihead automata over a one-letter alphabet. R.A.I.R.O. — Informatique Théorique et Applications, 14:67–82, 1980.zbMATHMathSciNetGoogle Scholar
  7. 7.
    K. Morita, K. Sugata, and H. Umeo. Computation complexity of n-bounded counter automaton and multidimensional rebound automaton. Systems • Computers • Controls, 8:80–87, 1977. Translated from Denshi Tsushin Gakkai Ronbunshi (IECE of Japan Trans.) 60-D:283–290, 1977 (Japanese).MathSciNetGoogle Scholar
  8. 8.
    K. Morita, K. Sugata, and H. Umeo. Computational complexity of n-bounded counter automaton and multi-dimensional rebound automaton. IECE of Japan Trans., 60-E:226–227, 1977. Abstract of [7].MathSciNetGoogle Scholar
  9. 9.
    H. Petersen. Two-way one-counter automata accepting bounded languages. SIGACT News, 25(3):102–105, 1994.CrossRefGoogle Scholar
  10. 10.
    M. Sakamoto, K. Inoue, and I. Takanami. A two-way nondeterministic one-counter language not accepted by nondeterministic rebound automata. IECE of Japan Trans., 73-E:879–881, 1990.Google Scholar
  11. 11.
    K. Sugata, H. Umeo, and K. Morita. The language accepted by a rebound automaton and its computing ability. Electronics and Communications in Japan, 60-A:11–18, 1977.MathSciNetGoogle Scholar
  12. 12.
    L. Zhang, J. Xu, K. Inoue, A. Ito, and Y. Wang. Alternating rebound Turing machines. Technical Report of IEICE, COMP98-4:25–32, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Holger Petersen
    • 1
  1. 1.Institut für InformatikUniversität StuttgartStuttgart

Personalised recommendations