Query Languages for Real Number Databases Based on Descriptive Complexity over R

  • Klaus Meer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1672)


We propose the study of query languages for databases involving real numbers as data (called real number databases in the sequel). As main new aspect our approach is based on real number complexity theory as introduced in [8] and descriptive complexity for the latter developed in [17]. Using this formal framework a uniform treatment of query languages for such databases is obtained. Precise results about both the data- and the expression-complexity of several such query languages are proved. More explicitly, relying on descriptive complexity theory over ℝ gives the possibility to derive a hierarchy of complete languages for most of the important real number complexity classes. A clear correspondence between different logics and such complexity classes is established. In particular, it is possible to formalize queries involving in a uniform manner real spaces of different dimensions. This can be done in such a way that the logical description exactly reflects the computational complexity of a query. The latter might circumvent a problem appearing in some of the former approaches dealing with semi-algebraic databases (see [20] , [18]), where the use of first-order logic over real-closed fields can imply inefficiency as soon as the dimension of the underlying real space is not fixed - no matter whether the query under consideration is easy to compute or not.


Logical Description Function Symbol Query Language Order Logic Descriptive Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Abiteboul, R. Hull, V. Vianu: Foundations of Databases. Addison-Wesley (1995).Google Scholar
  2. 2.
    S. Abiteboul, V. Vianu: Generic Computation and its Complexity. Proc. 23rd STOC (1991), 209–219.Google Scholar
  3. 3.
    S. Abiteboul, C.H. Papadimitriou, V. Vianu: The Power of Reflectional Relational Machines. Proc. LICS (1994).Google Scholar
  4. 4.
    M. Benedikt, G. Dong, L. Libkin, L. Wong: Relational Expressive Power of Constraint Query Languages. Journal of the ACM 45, No.l (1998), 1–34.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    M. Benedikt, L. Libkin: On the Structure of Queries in Constraint Query Languages, Proc. LICS 1996, 25–34.Google Scholar
  6. 6.
    M. Benedikt, L. Libkin: Languages for Relational Databases over Interpreted Structures, Proc. PODS 1997, 87–98.Google Scholar
  7. 7.
    L. Blum, F. Cucker, M. Shub, S. Smale: Complexity and Real Computation. Springer-Verlag (1998).Google Scholar
  8. 8.
    L. Blum, M. Shub, S. Smale: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bulletin American Mathematical Society 21 (1989), 1–46.zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    A.K. Chandra, D. Harel: Computable Queries for Relational Data Bases. Journal of Computer and System Sciences 21 (1980), 156–178.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    F. Cucker: On the complexity of quantifier elimination: the structural approach. The Computer Journal 36 (1993), 400–408.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    F. Cucker and M. Matamala: On digital nondeterminism. Mathematical Systems Theory 29 (1996), 635–647.zbMATHMathSciNetGoogle Scholar
  12. 12.
    F. Cucker, K. Meer: Logics which capture complexity classes over the reals. To appear in: Journal of Symbolic Logic.Google Scholar
  13. 13.
    F. Cucker, A. Torrecillas: Two P-complete Problems in the Theory of the Reals. Journal of Complexity 8 (1992), 454–466.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    F. Dumortier, M. Gyssens, L. Vandeurzen, D. van Gucht: On the decidability of Semi-Linearity for Semi-Algebraic Sets and its Implications for Spatial Databases. Proc. PODS (1997), 68–77.Google Scholar
  15. 15.
    H.D. Ebbinghaus, J. Flum: Finite Model Theory. Springer-Verlag (1995).Google Scholar
  16. 16.
    E. Grädel and Y. Gurevich. Metafinite model theory. In: D. Leivant (ed.), Logic and Computational Complexity. Springer-Verlag (1996), 313–366.Google Scholar
  17. 17.
    E. Grädel, K. Meer: Descriptive complexity theory over the real numbers. Proc. STOC (1995) 315–324. Full paper version in: J. Renegar, M. Shub, and S. Smale (editors): The Mathematics of Numerical Analysis, Lectures in Applied Mathematics 32, American Mathematical Society (1996), 381–404.Google Scholar
  18. 18.
    S. Grumbach, J. Su: Queries with arithmetical constraints. Theoretical Computer Science 173 (1997), 151–181.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    M. Gyssens, J. van den Bussche, D. van Gucht: Complete geometrical query languages. Proc. PODS (1997), 62–67.Google Scholar
  20. 20.
    P.C. Kanellakis, G.M. Kuper, P.Z. Revesz: Constraint Query Languages, Journal of Computer and System Sciences 51 (1995), 26–52.CrossRefMathSciNetGoogle Scholar
  21. 21.
    N. Lynch: Logspace recognition and translation of parenthesis languages. Journal of the ACM 24 (1977), 583–590.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    K. Meer: Counting Problems over ℝ; extended abstract. In: Proc. 22nd International Symposium on Mathematical Foundations of Computer Science, Bratislava, Lecture Notes in Computer Science 1295, Springer 1997, 398–407; full version to appear in: Theoretical Computer Science.Google Scholar
  23. 23.
    K. Meer, C. Michaux: A Survey on Real Structural Complexity Theory. Bulletin of the Belgian Mathematical Society Simon Stevin 4 (1997), 113–148.zbMATHMathSciNetGoogle Scholar
  24. 24.
    C. Michaux: Une remarque à propos des machines sur ℝ introduites par Blum, Shub et Smale. C. R. Acad. Sci. Paris, 309, Série I (1989), 435–437.zbMATHMathSciNetGoogle Scholar
  25. 25.
    J. Paredaens, J. Van den Bussche, D. van Gucht: First-order queries on finite structures over the reals. SIAM Journal on Computing 27, no.6 (1998), 1747–1763.zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    M. Vardi: Complexity of relational query languages. Proc. 14th STOC (1982), 137–146.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Klaus Meer
    • 1
  1. 1.Lehrstuhl C für MathematikRWTH AachenAachenGermany

Personalised recommendations