Advertisement

On-Line Zone Construction in Arrangements of Lines in the Plane

  • Yuval Aharoni
  • Dan Halperin
  • Iddo Hanniel
  • Sariel Har-Peled
  • Chaim Linhart
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1668)

Abstract

Given a finite set L of lines in the plane we wish to compute the zone of an additional curve γ in the arrangement A(L), namely the set of faces of the planar subdivision induced by the lines in L that are crossed by γ, where γ is not given in advance but rather provided online portion by portion. This problem is motivated by the computation of the area bisectors of a polygonal set in the plane. We present four algorithms which solve this problem efficiently and exactly (giving precise results even on degenerate input). We implemented the four algorithms. We present implementation details, comparison of performance, and a discussion of the advantages and shortcomings of each of the proposed algorithms.

Keywords

Convex Hull Binary Search Tree Input Line Recursion Tree Single Face 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Aharoni. Computing the area bisectors of polygonal sets: An implementation. In preparation, 1999.Google Scholar
  2. 2.
    A. M. Andrew. Another efficient algorithm for convex hulls in two dimensions. Information Processing Letters, 9:216–219, 1979.zbMATHCrossRefGoogle Scholar
  3. 3.
    K.-F. Böhringer, B. Donald, and D. Halperin. The area bisectors of a polygon and force equilibria in programmable vector fields. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 457–459, 1997. To appear in Disc. and Comput. Geom.Google Scholar
  4. 4.
    K.-F. Böhringer, B. R. Donald, and N. C. MacDonald. Upper and lower bounds for programmable vector fields with applications to MEMS and vibratory plate parts feeders. In J.-P. Laumond and M. Overmars, editors, Robotics Motion and Manipulation, pages 255–276. A.K. Peters, 1996.Google Scholar
  5. 5.
    C. Burnikel, K. Mehlhorn, and S. Schirra. The LEDA class real number. Technical Report MPI-I-96-1-001, Max-Planck Institut Inform., Saarbrücken, Germany, Jan. 1996.Google Scholar
  6. 6.
    The CGAL User Manual, Version 1.2, 1998.Google Scholar
  7. 7.
    B. Chazelle, H. Edelsbrunner, L. J. Guibas, M. Sharir, and J. Snoeyink. Computing a face in an arrangement of line segments and related problems. SIAM J. Comput., 22:1286–1302, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.zbMATHGoogle Scholar
  9. 9.
    H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs on Theoretical Computer Science. Springer Verlag, Heidelberg, Germany, 1987.Google Scholar
  10. 10.
    H. Edelsbrunner, L. J. Guibas, J. Pach, R. Pollack, R. Seidel, and M. Sharir. Arrangements of curves in the plane: Topology, combinatorics, and algorithms. Theoret. Comput. Sci., 92:319–336, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. Fabri, G. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. The CGAL kernel: A basis for geometric computation. In M. C. Lin and D. Manocha, editors, Proc. 1st ACM Workshop on Appl. Comput. Geom., volume 1148 of Lecture Notes Comput. Sci., pages 191–202. Springer-Verlag, 1996.Google Scholar
  12. 12.
    A. Fabri, G. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. On the design of CGAL, the Computational Geometry Algorithms Library. Technical Report MPI-I-98-1-007, Max-Planck-Institut Inform., 1998.Google Scholar
  13. 13.
    S. Fortune and C. J. van Wyk. Static analysis yields efficient exact integer arithmetic for computational geometry. ACM Trans. Graph., 15(3):223–248, July 1996.CrossRefGoogle Scholar
  14. 14.
    R. L. Graham. An efficient algorithm for determining the convex hull of a set of points in the plane. Information Processing Letters, 1:132–133, 1972.zbMATHCrossRefGoogle Scholar
  15. 15.
    D. Halperin. Arrangements. In J. E. Goodman and J. O’Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 21, pages 389–412. CRC Press LLC, 1997.Google Scholar
  16. 16.
    S. Har-Peled. Constructing cuttings in theory and practice. In Proc. 14th Annu. ACM Sympos. Comput. Geom., pages 327–336, 1998.Google Scholar
  17. 17.
    S. Har-Peled. Taking a walk in a planar arrangement. Manuscript, http://www.math.tau.ac.il/~sariel/papers/98/walk.html, 1999.
  18. 18.
    K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, New York, 1999. To appear.zbMATHGoogle Scholar
  19. 19.
    K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice Hall, Englewood Cliffs, NJ, 1994.Google Scholar
  20. 20.
    M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. J. Comput. Syst. Sci., 23:166–204, 1981.Google Scholar
  21. 21.
    F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, NY, 1985.Google Scholar
  22. 22.
    M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York, 1995.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Yuval Aharoni
    • 1
  • Dan Halperin
    • 1
  • Iddo Hanniel
    • 1
  • Sariel Har-Peled
    • 1
  • Chaim Linhart
    • 1
  1. 1.Department of Computer ScienceTel-Aviv UniversityTel-AvivISRAEL

Personalised recommendations