The Parallelization of the Princeton Ocean Model

  • L. A. Boukas
  • N. Th. Mimikou
  • N. M. Missirlis⋆
  • G. L. Mellor
  • A. Lascaratos
  • G. Korres
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1685)

Abstract

In this paper we present the parallel implementation of the Princeton Ocean Model (POM) using message passing. Domain decomposition techniques are used for the horizontal discretization whereas in the vertical direction each column per grid point is computed. The required interprocessor communication was implemented on the PVM message passing library. Three different data partitioning schemes are studied. It is found that the checkerboard partitioning produces the best results when the number of processors becomes larger than 15, otherwise row block striped partitioning is to be preferred.

Keywords

Princeton Ocean Model domain decomposition message passing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Argyropoulos, N.E., Boukas, L.A., Mimikou, N.Th., Missirlis, N.M., Papageorgiou, J.G.: A Distributed Implementation of the Numerical Weather Prediction Eta Model. Presented at the IASTED International Conference Parallel and Distributed Systems, Euro-PDS’97, June 9–11, 1997, Barcelona, Spain and appeared in the Proceedings of the IASTED Conference on Parallel and Distributed Computing and Networks, IASTED/Acta Press (also accepted, after selection, to be published in extended form in the IASTED Journal for Parallel and Distributed Systems) (1997) 301–304.Google Scholar
  2. [2]
    Ashworth, M.: Parallel Processing in Environmental Modeling. Parallel Supercomputing in Atmospheric Sciences, G-R. Hoffmann and T. Kauranne eds.,World Scientific, Singapore (1993) 1–25.Google Scholar
  3. [3]
    Bleck, R., Dean, S., O’Keefe, M., Sawdey, A.: A comparison of data parallel and message-passing versions of the Miami Isopycnic Coordinate Ocean Model (MICOM). Parallel Computing, 21 no. 10 (1995) 1695–1720.MATHCrossRefGoogle Scholar
  4. [4]
    Blumberg, A.F., Mellor, G.L.: A coastal ocean numerical model. Mathematical Modelling of Estharine Physics, Proc. Int. Symp., Hamburg, August 24–26, 1978, edited by Sundermann and K.-P. Holz, Springer-Verlag, Berlin (1980) 203–214.Google Scholar
  5. [5]
    Boukas, L.A., Mimikou, N.Th., Missirlis, N.M.: A parallel implementation of the Eta model. Abstracts of the Symposium on Regional Weather Prediction On Parallel Computer Enviroments Athens, Greece (1997).Google Scholar
  6. [6]
    DeRose, L., Gallivan K., Gallopoulos, E.: 3-d land avoidance and load balancing in regional ocean simulation. Proc. 1996 Int’l. Conf. Parallel Processing 2 (1996) 158–165.CrossRefGoogle Scholar
  7. [7]
    DeRose, L., Gallivan K., Gallopoulos, E.: Status Report: Parallel Ocean Circulation Modeling on CEDAR. Parallel Supercomputing in Atmospheric Science. G.-R. Hoffmann and T. Kauranne eds., World Scientific, Singapore (1993) 157–172.Google Scholar
  8. [8]
    DeRose, L, Gallivan, K., Gallopoulos, E.: Experiments with an ocean circulation model on CEDAR. Proc. 1992 ACM International Conference on Supercomputing (1992) 397–408.Google Scholar
  9. [9]
    Gülzow, V., Kleese, K.: About the parallelization of the HOPE Ocean Model. Proceedings of the Sixth ECMWF Workshop on the Use of Parallel Processors in Meteorology, Reading, England, November 1994. Proceedings published by World Scientific Publishers, Coming of Age, edited by G-R. Hoffmann and N. Kreitz (1995) 505–511.Google Scholar
  10. [10]
    Gwilliam, C.S.: The OCCAM Global Ocean Model. Proceedings of the Sixth ECMWF Workshop on the Use of Parallel Processors in Meteorology, Reading, England, November 1994. Proceedings published by World Scientific Publishers, Coming of Age, edited by G-R. Hoffmann and N. Kreitz (1995) 446–454.Google Scholar
  11. [11]
    Jones, P.W.: The Los Alamos parallel ocean program (POP) and coupled model on MPP and clustered SMP architectures. Making its Mark, G-R. Hoffmann and N. Kreitz, World Scientific, Singapore (1997) 226–238.Google Scholar
  12. [12]
    Kallos, G., Nickovic, S., Jovic, D., Kakaliagou, O., Papadopoulos, A., Missirlis, N., Boukas, L., Mimikou, N.: The Eta Model Operational Forecasting System and its Parallel Implementation. Proceedings of the First Workshop on Large-Scale Scientific Computations, eds. M. Griebel, O. Iliev, S.D. Margenov, P.S. Vassilevski, Varna,& Bulgaria (1997) 176–188.Google Scholar
  13. [13]
    Kumar, V., et al: Introduction to Parallel Computing: Design and Analysis of Algorithms. The Benjamin/Cummings Publ. (1994).Google Scholar
  14. [14]
    Mellor, G.L., Yamada, T.: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 10 No.4 (1982) 851–875.CrossRefGoogle Scholar
  15. [15]
    Oberhuber, J.M., Ketelsen, K.: Parallelization of an OGCM on the CRAY T3D. Proceedings of the Sixth ECMWF Workshop on the Use of Parallel Processors in Meteorology, Reading, England, November 1994. Proceedings published by World Scientific Publishers, Coming of Age, edited by G-R. Hoffmann and N. Kreitz (1995) 494–504.Google Scholar
  16. [16]
    Pacanowski, R.C., Dixon, K., Rosati, A.: The GFDL Modular Ocean Model Users Guide. Technical Report 2 GFDL Ocean Group (1990).Google Scholar
  17. [17]
    Sawdey, A., O’Keefe, M., Bleck, R., Numrich, R.W.: The design, implementation and performance of a parallel ocean circulation Model. Proceedings of the Sixth ECMWF Workshop on the Use of Parallel Processors in Meteorology, Reading, England, November 1994. Proceedings published by World Scientific Publishers, Coming of Age, edited by G-R. Hoffmann and N. Kreitz (1995) 523–550.Google Scholar
  18. [18]
    Sawdey, A.C., O’Keefe, M.T., Jones, W.B.: A General Programming Model for Developing Scalable Ocean Circulation Applications. Making its Mark, G-R. Hoffmann and N. Kreitz, World Scientific, Singapore (1997) 209–225.Google Scholar
  19. [19]
    Smith, R.D., Dukowicz, J.K., Malone, R.C.: Physica D 60 (1992) 38.MATHCrossRefGoogle Scholar
  20. [20]
    Wait, R., Harding, T.J.: Numerical Software for 3D Hydrodynamic Modeling using Transputer Array. Parallel Supercomputing in Atmospheric Sciences, G-R. Hoffmann and T. Kauranne eds., World Scientific, Singapore (1993) 453–464.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • L. A. Boukas
    • 1
  • N. Th. Mimikou
    • 1
  • N. M. Missirlis⋆
    • 1
  • G. L. Mellor
    • 2
  • A. Lascaratos
    • 3
  • G. Korres
    • 3
  1. 1.Department of InformaticsUniversity of AthensAthensGreece
  2. 2.Princeton UniversityPrincetonUSA
  3. 3.Department of Applied PhysicsUniversity of AthensAthensGreece

Personalised recommendations