Advertisement

A Skeleton for Parallel Dynamic Programming

  • D. Morales
  • F. Almeida
  • F. Garcia
  • J. Gonzalez
  • J. Roda
  • C. Rodriguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1685)

Abstract

The development of skeleton tools constitutes an alternative to cover the gap between current parallel architectures and sequential programmers. Its contruction involves formal models, paradigms and methologies. Based in the automata theory we have developed a formal model for Parallel Dynamic Programming over pipeline networks. This model makes up a paradigm which is the core of skeleton tools oriented to the Dynamic Programming Technique. Following the methodology coerced by the model, we present a tool that provides the user with the ability to obtain parallel programs adapted to the parallel architecture. The efficiency is contrasted on three current parallel platforms: Cray T3E, IBM SP2 and SG Origin 2000.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Almeida F. Models in Parallel Dynamic Programming for the Discrete Case. PHDegree. DEIOC. Unniversidad de La Laguna. October 1996.Google Scholar
  2. [2]
    Andonov, Raimbault, Quinton. Dynamic Programming Parallel Implementations for the Knapsack Problem. Technical Report 740. IRISA. June 1993.Google Scholar
  3. [3]
    Bellman R. Dynamic Programming. Princeton U. P. 1957.Google Scholar
  4. [4]
    Chen G., Jang J.. An Improved Parallel Algorithm for 0/1 Knapsack Problems. Parallel Computing. 18. 811–821. 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Edmonds P., Chu E., George A.. Dynamic Programming on a Shared Memory Multiprocessor. Parallel Computing. 19, 9–22. 1993.zbMATHCrossRefGoogle Scholar
  6. [6]
    Gibbons A., Rytter W., Efficient Parallel Algorithms. Cambridge University Press. 1988.Google Scholar
  7. [7]
    Ibaraki T.. Enumerative Approaches to Combinatorial Optimization, Part II. Annals of Operations Research. Volume 11, N. 1-4, 1988.Google Scholar
  8. [8]
    Kindervater G., Trienekens H.. Experiments with Parallel Algorithms for Combinatorial Problems. European Journal of Operational Research. 33, 65–81. 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Moldovan D., Fortes J. Partitioning and Mapping Algorithms into fixed size Systolic arrays. IEEE Trans. Comput. C-35(1), 1–12. 1986.CrossRefGoogle Scholar
  10. [10]
    Wah B., Li G., Fen C.. Multiprocessing of Combinatorial Search Problems. Computer. Vol. 18. 6, 93–108. 1985.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • D. Morales
    • 1
  • F. Almeida
    • 1
  • F. Garcia
    • 1
  • J. Gonzalez
    • 1
  • J. Roda
    • 1
  • C. Rodriguez
    • 1
  1. 1.Centro Superior de Informática Dpto. E.I.O. y ComputaciónUniversidad de La LagunaTenerifeSpain

Personalised recommendations