Advertisement

Species Formation in Evolving Finite State Machines

  • Arno Rasek
  • Walter Dörwald
  • Michael Hauhs
  • Alois Kastner-Maresch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1674)

Abstract

Since the early beginnings of Evolutionary Computation, Finite State Machines (FSMs) have been applied to model organisms. We present a new approach to evolve such artificial organisms. The FSMs are subject to a difficult navigation and searching task in heterogeneous environments. We give a definition of FSM-species and investigate their formation. The results show that species are formed as the organisms agree on a common ‘genetic broadcast language’ and take advantage of the fruitful effects of recombination. As observed in natural ecosystems, higher abiotic diversity leads to higher biotic diversity.

Keywords

Strategy Parameter Finite State Machine Output Table Species Formation Input Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, New York (1996)zbMATHGoogle Scholar
  2. 2.
    Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming-An Introduction: On the Automatic Programming of Computer Programs and its Applications. Morgan Kaufman, San Francisco, dpunkt.verlag, Heidelberg (1998)zbMATHGoogle Scholar
  3. 3.
    Collins, R.J., Jefferson, D.R.: Representations for Artificial Organisms. In: Meyer, J.-A. (ed.): From Animals to Animats, Proceedings of the First International Conference on Simulation of Adaptive Behavior. MIT Press, Cambridge (1991) 382–390Google Scholar
  4. 4.
    Collins, R.J., Jefferson, D.R.: AntFarm: Towards Simulated Evolution. In: Langton, C.G., Taylor, C., Farmer, J.D., Rasmussen, S. (eds.): Artificial Life II. Addison Wesley, Redwood City (1991) 579–601Google Scholar
  5. 5.
    Fogel, D.B.: Evolving Behaviors in the Iterated Prisoner’s Dilemma. Evol. Comp. 1 (1993) 77–97Google Scholar
  6. 6.
    Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated Evolution. John Wiley, New York (1966)zbMATHGoogle Scholar
  7. 7.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  8. 8.
    Hopcroft, J.E., Ullmann, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  9. 9.
    Jefferson, D.R., Collins, R.J., Cooper, C., Dyer, M., Flowers, M., Korf, R., Taylor, C., Wang, A.: Evolution as a Theme in Artificial Life: The Genesys/Tracker System. In: Langton, C.G., Taylor, C, Farmer, J.D., Rasmussen, S. (eds.): Artificial Life II. Addison-Wesley, Redwood City (1991) 549–578Google Scholar
  10. 10.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd edn. Springer-Verlag, Berlin Heidelberg New York (1996)zbMATHGoogle Scholar
  11. 11.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)Google Scholar
  12. 12.
    Schwefel, H.-P.: Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie: Mit einer vergleichenden Einführung in die Hill-Climbing und Zufallsstrategien. Birkhäuser, Basel (1977)Google Scholar
  13. 13.
    Törn, A., Žilinskas, A.: Global Optimization, Lecture Notes in Computer Science, Vol. 350. Springer-Verlag, Berlin Heidelberg New York (1989)zbMATHGoogle Scholar
  14. 14.
    Wilson, S.W.: Knowledge Growth in an Artificial Animal. In: Greffenstette, J.J. (ed.), Proceedings of the First International Conference on Genetic Algorithms and Their Applications. Erlbaum, Hillsdale (1985) 16–23Google Scholar
  15. 15.

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Arno Rasek
    • 1
  • Walter Dörwald
    • 1
  • Michael Hauhs
    • 1
  • Alois Kastner-Maresch
    • 1
  1. 1.BITÖKUniversity of BayreuthBayreuthGermany

Personalised recommendations