Factoring Integers Using SIMD Sieves

  • Brandon Dixon
  • Arjen K. Lenstra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 765)


We describe our single-instruction multiple data (SIMD) implementation of the multiple polynomial quadratic sieve integer factoring algorithm. On a 16K MasPar massively parallel computer, our implementation can factor 100 digit integers in a few days. Its most notable success was the factorization of the 110-digit RSA-challenge number, which took about a month.


  1. 1.
    Bernstein, D. J., Lenstra, A. K.: A general number field sieve implementation (to appear)Google Scholar
  2. 2.
    Caron, T. R., Silverman, R. D.: Parallel implementation of the quadratic sieve. J. Supercomputing 1 (1988) 273–290CrossRefGoogle Scholar
  3. 3.
    Davis, J. A., Holdridge, D. B.: Factorization using the quadratic sieve algorithm. Tech. Report SAND 83-1346, Sandia National Laboratories, Albuquerque, NM, 1983Google Scholar
  4. 4.
    Dixon, B., Lenstra, A.K.: Massively parallel elliptic curve factoring. Advances in Cryptology, Eurocrypt’92, Lecture Notes in Comput. Sci. 658 (1993) 183–193Google Scholar
  5. 5.
    Gjerken, A.: Faktorisering og parallel prosessering (in norwegian), Bergen, 1992Google Scholar
  6. 6.
    Lenstra, A. K.: Massively parallel computing and factoring. Proceedings Latin’92, Lecture Notes in Comput. Sci. 583 (1992) 344–355Google Scholar
  7. 7.
    Lenstra, A. K., Lenstra, H.W., Jr.: Algorithms in number theory. Chapter 12 in: van Leeuwen, J. (ed.): Handbook of theoretical computer science. Volume A, Algorithms and complexity. Elsevier, Amsterdam, 1990Google Scholar
  8. 8.
    Lenstra, A. K., Lenstra, H. W., Jr., Manasse, M. S., Pollard, J. M.: The factorization of the ninth Fermat number. Math. Comp. 61 (1993) (to appear)Google Scholar
  9. 9.
    Lenstra, A.K., Manasse, M.S.: Factoring by electronic mail. Advances in Cryptology, Eurocrypt’ 89, Lecture Notes in Comput. Sci. 434 (1990) 355–371Google Scholar
  10. 10.
    Lenstra, A. K., Manasse, M.S.: Factoring with two large primes. Math. Comp. (to appear)Google Scholar
  11. 11.
    MasPar MP-1 principles of operation. MasPar Computer Corporation, Sunnyvale, CA, 1989Google Scholar
  12. 12.
    Pomerance, C: Analysis and comparison of some integer factoring algorithms. 89–139 in: Lenstra, H. W., Jr., Tijdeman, R. (eds): Computational methods in number theory. Math. Centre Tracts 154/155, Mathematisch Centrum, Amsterdam, 1983Google Scholar
  13. 13.
    Pomerance, C, Smith, J. W., Tuler, R.: A pipeline architecture for factoring large integers with the quadratic sieve algorithm. SIAM J. Comput. 17 (1988) 387–403MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    te Riele, H., Lioen, W., Winter, D.: Factorization beyond the googol with mpqs on a single computer. CWI Quarterly 4 (1991) 69–72MATHMathSciNetGoogle Scholar
  15. 15.
    RSA Data Security Corporation Inc., sci.crypt, May 18, 1991; information available by sending electronic mail to challenge-rsa-list@rsa.comGoogle Scholar
  16. 16.
    Silverman, R. D.: The multiple polynomial quadratic sieve. Math. Comp. 84 (1987) 327–339Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Brandon Dixon
    • 1
  • Arjen K. Lenstra
    • 2
  1. 1.Department of Computer SciencePrinceton UniversityPrincetonUSA
  2. 2.Room MRE-2Q334BellcoreMorristownUSA

Personalised recommendations