MINERVA: A Tour-Guide Robot that Learns

  • Sebastian Thrun
  • Maren Bennewitz
  • Wolfram Burgard
  • Armin B. Cremers
  • Frank Dellaert
  • Dieter Fox
  • Dirk Hähnel
  • Charles Rosenberg
  • Nicholas Roy
  • Jamieson Schulte
  • Dirk Schulz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1701)

Abstract

This paper describes an interactive tour-guide robot which was successfully exhibited in a Smithsonian museum. Minerva employed a collection of learning techniques, some of which were necessary to cope with the challenges arising from its extremely large and crowded environment, whereas others were used to aid the robot’s interactive capabilities. During two weeks of highly successful operation, the robot interacted with thousands of people, traversing more than 44km at speeds of up to 163 cm/sec in the un-modified museum.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Burgard, A. B., Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and S. Thrun. The interactive museum tour-guide robot. AAAI-98.Google Scholar
  2. 2.
    W. Burgard, D. Fox, D. Hennig, and T. Schmidt. Estimating the absolute position of a mobile robot using position probability grids. AAAI-98.Google Scholar
  3. 3.
    A. Elfes. Occupancy Grids: A Probabilistic Framework for Robot Perception and Navigation. PhD thesis, CMU, 1989.Google Scholar
  4. 4.
    C. Breazeal (Ferrell). A motivational system for regulating human-robot interaction. AAAI-98.Google Scholar
  5. 5.
    D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision avoidance. IEEE Robotics and Automation, 4(1), 1997.Google Scholar
  6. 6.
    D. Fox, W. Burgard, and S. Thrun. A hybrid collision avoidance method for mobile robots. ICRA-98.Google Scholar
  7. 7.
    D. Fox, W. Burgard, S. Thrun, and A. B. Cremers. Position estimation for mobile robots in dynamic environments. AAAI-98.Google Scholar
  8. 8.
    I. Horswill. Specialization of perceptual processes. TR 1511, MIT, AI Lab.Google Scholar
  9. 9.
    R. A. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.Google Scholar
  10. 10.
    L. P. Kaelbling, A. R. Cassandra, and J. A. Kurien. Acting under uncertainty: Discrete bayesian models for mobile-robot navigation. IROS-96.Google Scholar
  11. 11.
    J.-C. Latombe. Robot Motion Planning. Kluwer, 1991.Google Scholar
  12. 12.
    F. Lu and E. Milios. Globally consistent range scan alignment for environment mapping. Autonomous Robots, 4, 1997.Google Scholar
  13. 13.
    D. McDermott. The RPL manual, 1993. Can be obtained from http://www.cs.yale.edu/HTML/YALE/CS/HyPlans/mcdermott.html
  14. 14.
    I. R. Nourbakhsh. The failures of a self-reliant tour robot with no planner. Can be obtained at http://www.cs.cmu.edu/~illah/SAGE/index.html, 1998.
  15. 15.
    R. Simmons and S. Koenig. Probabilistic robot navigation in partially observable environments. IJCAI-95.Google Scholar
  16. 16.
    R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.Google Scholar
  17. 17.
    H. Takeda, C. Facchinetti, and J.-C. Latombe. Planning the motions of mobile robot in a sensory uncertainty field. IEEE Trans. on Pattern Analysis and Machine Intelligence, 16(10):1002–1017, 1994.CrossRefGoogle Scholar
  18. 18.
    S. Thrun. Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence, 99(1), 1998.Google Scholar
  19. 19.
    S. Thrun, D. Fox, and W. Burgard. A probabilistic approach to concurrent mapping and localization for mobile robots. Machine Learning, 31, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Sebastian Thrun
    • 1
  • Maren Bennewitz
    • 2
  • Wolfram Burgard
    • 2
  • Armin B. Cremers
    • 2
  • Frank Dellaert
    • 1
  • Dieter Fox
    • 1
  • Dirk Hähnel
    • 2
  • Charles Rosenberg
    • 1
  • Nicholas Roy
    • 1
  • Jamieson Schulte
    • 1
  • Dirk Schulz
    • 2
  1. 1.School of Computer ScienceCarnegie Mellon UniversityPittsburgh
  2. 2.Computer Science Department IIIUniversity of BonnBonnGermany

Personalised recommendations