Morphological Scale-Space Representation with Levelings

  • Fernand Meyer
  • Petros Maragos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1682)


A morphological scale-space representation is presented based on a morphological strong filter, the levelings. The scale-properties are analysed and illustrated. From one scale to the next, details vanish, but the contours of the remaining objects are preserved sharp and perfectly localised. This paper is followed by a companion paper on pde formula- tions of levelings.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.A. Hummel and B.C. Gidas. Zero crossings and the heat equation. Technical report, New York Univ., Courant Institute of Math. Sciences, Computer Science Division, 1984.Google Scholar
  2. 2.
    J.J Koenderink. The structure of images. Biol. Cybern., 50:363–370, 1984.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    T. Lindeberg. On scale selection for differential operators. In B. Braathen K. Heia, K.A. Hogdra, editor, Proc. 8th Scandinavian Conf. Image Analysis, Trømso, Norway, 1993. Norwegian Society for Image Processing and Pattern Recognition.Google Scholar
  4. 4.
    M. Baudin J. Babaud, A.P. Witkin and R.O. Duda. Uniqueness of the gaussian kernel for scale-space filtering. IEEE Trans. Pattern Analysis and Machine Intelligence, 8(1):26–33, 1986.MATHCrossRefGoogle Scholar
  5. 5.
    P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intell., pages 629–639, July 1989.Google Scholar
  6. 6.
    J. Weickert. Theoretical Foundations of Anisotropic Diffusion in Image Processing, volume 11 of Computing Supplement, pages 221–246. Springer, 1996.Google Scholar
  7. 7.
    P.T. Jackway and M. Deriche. Scale-space properties of multiscale morphological dilation-erosion. IEEE Trans. Pattern Analysis and Machine Intelligence, 18(1):38–51, 1996.CrossRefGoogle Scholar
  8. 8.
    G. Matheron. Random Sets and Integral Geometry. New York: Wiley, 1975.MATHGoogle Scholar
  9. 9.
    P. Maragos. Pattern spectrum and multiscale shape representation. IEEE Trans. Pattern Analysis and Machine Intelligence, 11:701–716, 1989.MATHCrossRefGoogle Scholar
  10. 10.
    J. Serra. Mathematical Morphology: Vol. II, chapter Alternating Sequential Filters. London: Academic Press, 1988.Google Scholar
  11. 11.
    L. Vincent. Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms. IEEE Trans. in Image Procesing, 1993.Google Scholar
  12. 12.
    G. Matheron. Les nivellements. Technical report, Centre de Morphologie Mathématique, 1997.Google Scholar
  13. 13.
    F. Meyer. From connected operators to levelings. In H. Heijmans and J. Roerdink, editors, Mathematical Morphology and its Applications to Image and Signal Processing, pages 191–199. Kluwer, 1998.Google Scholar
  14. 14.
    F. Meyer. The levelings. In H. Heijmans and J. Roerdink, editors, Mathematical Morphology and Its Applications to Image Processing, pages 199–207. Kluwer, 1998.Google Scholar
  15. 15.
    J. Serra. Quelques propriétés des nivellements. Technical Report 30/98/MM, CMM, 1998.Google Scholar
  16. 16.
    P. Salembier and J. Serra. Flat zone filtering, connected operators and filters by reconstruction. IEEE Trans. Image Processing, 4:1153–1160, Aug. 1995.CrossRefGoogle Scholar
  17. 17.
    J. Serra. Set connectons and discrete filtering. In M. Couprie G. Bertrand and L. Perroton, editors, Discrete Geometry for Computer Imagery, Lecture Notes in Computer Science 1568, pages 191–207. Springer, 1999.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Fernand Meyer
    • 1
  • Petros Maragos
    • 2
  1. 1.Centre de Morphologie Mathématique, Ecole des Mines de ParisFontainebleauFrance
  2. 2.Dept. of Electrical & Computer EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations