A clustering-based constructive induction method and its application to rheumatoid arthritis

  • José A. Sanandrés
  • Víctor Maojo
  • José Crespo
  • Agustń Gómez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2101)

Abstract

We present a hybrid constructive model of induction. As a benchmark we used a database of rheumatoid arthritis patients. Combining Machine Learning and Clustering algorithms we obtained clinical prediction rules. Our model creates new features thru clustering methods, improving traditional ML methods.

Keywords

machine learning inductive learning constructive induction clustering rheumatoid arthritis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peter Auer, Robert C. Holte, and Wolfgang Maass. Theory and applications of agnostic pac-learning with small decision trees. Technical Report NC-TR-96-034, NeuroCOLT, 1996.Google Scholar
  2. 2.
    Carla E. Brodley. Recursive automatic bias selection for classifier construction. Machine Learning, 20:63–94, 1995.Google Scholar
  3. 3.
    B.S Everitt. Cluster Analysis. Edward Arnold, London, 1993.Google Scholar
  4. 4.
    A. Famili, Wi-Min Shen, Richard Weber, and Evangelos Simoudis. Data preprocessing and intelligent data analysis. Intelligent Data Analysis, 1(1), January 1997.Google Scholar
  5. 5.
    Brian R. Gaines. An ounce of knowledge is worth a ton of data: Quantitative studies of the trade-off between expertise and data based on statistically well-founded empirical induction. In Proceedings of 6th International Workshop on Machine Learning, pages 156–159. Morgan Kaufmann, June 1989.Google Scholar
  6. 6.
    I. Kononenko, I. Bratko, and M. Kukar. Application of machine learning to medical diagnosis. In R. S. Michalski, I. Bratko, and M. Kubat, editors, Machine Learning and Data Mining: Methods and Applications. John Wiley & Sons Ltd, 1997.Google Scholar
  7. 7.
    T.-S. Lim, W.-Y. Loh, and Y.-S. Shih. An empirical comparison of decision trees and other classification methods. Technical Report 979, Department of Statistics, University of Wisconsin-Madison, Madison, WI, June 30 1997.Google Scholar
  8. 8.
    César Montes. MITO: Método de Induccióon Total. PhD thesis, Facultad de Informática, UPM, 1994.Google Scholar
  9. 9.
    J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA, 1992.Google Scholar
  10. 10.
    J.R. Quinlan. Induction of logic programs: Foil and related systems. New Generation Computing, 13:287–312, 1995.CrossRefGoogle Scholar
  11. 11.
    J.R. Quinlan. Improved use of continuous attributes in c4.5. Journal of Artificial Intelligence Research, 4:77–90, 1996.MATHCrossRefGoogle Scholar
  12. 12.
    J.A. Sanandrés, E. Ciruelo, J. Crespo, A. Gómez, V. Maojo, and C. Montes. Predreuma: Modelo de inducción constructiva en prognosis y clasificación en artritis reumatoide. Madrid, Abril 1997. INFORSALUD 97. II Congreso Nacional de Informática de la Salud.Google Scholar
  13. 13.
    J.H Wasson, H.C. Sox, R.K. Neff, and L. Goldman. Clinical prediction rules: Applications and methodological standards. The New England Journal of Medicine, 313(13):793–799, Sept 1985.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • José A. Sanandrés
    • 1
  • Víctor Maojo
    • 1
  • José Crespo
    • 1
  • Agustń Gómez
    • 2
  1. 1.Medical Informatics Group. Artificial Intelligence Laboratory. School of Computer ScienceUniversidad Politécnica de MadridSpain
  2. 2.Clinical Epidemiology Research UnitHospital 12 de OctubreMadridSpain

Personalised recommendations