Advertisement

Parallelization of the Continuous Global Optimization Problem with Inequality Constraints by Using Interval Arithmetic⋆

  • Abdeljalil Benyoub
  • El Mostafa Daoudi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2110)

Abstract

In this work, we study on distributed memory architecture, the parallelization of the continuous global optimization problem, based on interval arithmetic, with inequality constraints. Since this algorithm is dynamic and irregular, we propose, in particular, some techniques taking into account the load balancing problem.

Keywords

Continuous global optimization problem interval arithmetic Branch-And-Bound Hansen’s algorithm parallelization load balancing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benyoub A., Daoudi E.M.: An Algorithm for Finding an Approximate Feasible Point by Using Interval Arithmetic, LaRI Laboratory, Dept. Maths&CS. Faculty for Science, Univ. Mohammed First, Oujda, Morocco, 2000.Google Scholar
  2. 2.
    Berner S.: A Parallel Method for Verified Global Optimization, Scientific Computing and Validated Numerics: Proc. Int. Sym. on Sc. Computing; G. Alefeld, A. Frommer, B. Lang editors, Akademie Verlag GmbH, Berlin, Germany, 1996.Google Scholar
  3. 3.
    Casado L.G., Garcia I.: Work Load Balance approaches for Branch-and-Bound Algorithms on Distributed Systems, Department of Computer Architecture and Electronics, Almeria University, Almeria, Spain.Google Scholar
  4. 4.
    Denneulin Y., Mehaut J.F., Planquelle B., Revol N.: Parallelization of Continuous Verified Global Optimization, Presented at the 19th Conference TC7 on System Modeling and Optimization, Cambridge, United Kingdom, July 1999.Google Scholar
  5. 5.
    Eriksson J., Lindstöm P.: A Parallel Interval Method Implementation for Global Optimization using Dynamic Load Balancing, Reliable Computing, 1, 1995, 77–91.zbMATHCrossRefGoogle Scholar
  6. 6.
    Hansen E.: Global Optimization Using Interval Analysis, Marcel Decker, NewYork, USA, 1992.zbMATHGoogle Scholar
  7. 7.
    Leclerc A.P.: Efficient and Reliable Global Optimization, PhD Thesis, The Ohio State University, USA, 1992.Google Scholar
  8. 8.
    Leclerc A.P.: Parallel Interval Global Optimization and its Implementation in C++, Interval Computations, 3, 1993, 148–163.MathSciNetGoogle Scholar
  9. 9.
    Messine F.: Méthodes d’Optimisation Globale basées sur l’Analyse d’Intervalle pour la Résolution de Problèmes avec Contraintes, Thèse, Université Paul Sabatier, IRIT-Toulouse, France, Septembre, 1997.Google Scholar
  10. 10.
    Ratschek H., Rokne J.:New Computer Methods for Global Optimization, Ellis Horwood Limited, Market Cooper Street, Chichester, West Sussex, PO19 1EB, England, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Abdeljalil Benyoub
  • El Mostafa Daoudi
    • 1
  1. 1.Department of Mathematics and Computer Science Faculty of SciencesUniversity of Mohammed FirstOujdaMorocco

Personalised recommendations