The Complexity of Computing the Size of an Interval

  • Lane A. Hemaspaandra
  • Sven Kosub
  • Klaus W. Wagner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2076)

Abstract

We study the complexity of counting the number of elements in intervals of feasible partial orders. Depending on the properties that partial orders may have, such counting functions have different complexities. If we consider total, polynomial-time decidable orders then we obtain exactly the #P functions. We show that the interval size functions for polynomial-time adjacency checkable orders are tightly related to the class FPSPACE(poly): Every FPSPACE(poly) function equals a polynomial-time function subtracted from such an interval size function. We study the function #DIV that counts the nontrivial divisors of natural numbers, and we show that #DIV is the interval size function of a polynomial-time decidable partial order with polynomial-time adjacency checks if and only if primality is in polynomial time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. P. Bovet and P. Crescenzi. Introduction to the Theory of Complexity. International Series in Computer Science. Prentice Hall, New York, 1994.Google Scholar
  2. 2.
    A. E. F. Clementi, J. D. P. Rolim, and L. Trevisan. Recent advances towards proving P=BPP. Bulletin of the EATCS, 64:96–103, 1998.MATHMathSciNetGoogle Scholar
  3. 3.
    S. A. Cook. The complexity of theorem-proving procedures. In Proceedings 3rd ACM Symposium on Theory of Computing, pages 151–158, 1971.Google Scholar
  4. 4.
    S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. Journal of Computer and System Sciences, 48:116–148, 1994.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J. Gill. Computational complexity of probabilistic complexity classes. SIAM Journal on Computing, 6:675–695, 1977.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    A. V. Goldberg and M. Sipser. Compression and ranking. SIAM Journal on Computing, 20(3):524–536, 1991.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    J. Goldsmith, L. A. Hemachandra, D. Joseph, and P. Young. Near-testable sets. SIAM Journal on Computing, 20(3):506–523, 1991.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    J. Grollmann and A. L. Selman. Complexity measures for public-key crypto-systems. SIAM Journal on Computing, 17(2):309–335, 1988.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    H. Hempel and G. Wechsung. The operators min and max on the polynomial hierarchy. International Journal of Foundations of Computer Science, 11(2):315–342, 2000.CrossRefMathSciNetGoogle Scholar
  10. 10.
    U. Hertrampf, H. Vollmer, and K. W. Wagner. On balanced versus unbalanced computation trees. Mathematical Systems Theory, 29:411–421, 1996.MATHMathSciNetGoogle Scholar
  11. 11.
    K. Ko. On self-reducibility and weak P-selectivity. Journal of Computer and System Sciences, 26:209–221, 1983.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    S. Kosub. A note on unambiguous function classes. Information Processing Letters, 72(5-6):197–203, 1999.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    R. E. Ladner. Polynomial space counting problems. SIAM Journal on Computing, 18(6):1087–1097, 1989.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    L. Levin. Universal sorting problems. Problems of Information Transmission, 9:265–266, 1973.Google Scholar
  15. 15.
    A. R. Meyer and M. Paterson. With what frequency are apparently intractable problems difficult? Technical Report MIT/LCS/TM-126, Laboratory for Computer Science, MIT, Cambridge, MA, 1979.Google Scholar
  16. 16.
    A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with squaring requires exponential time. In Proceedings 13th Symposium on Switching and Automata Theory, pages 125–129. IEEE Computer Society Press, Los Alamitos, 1972.CrossRefGoogle Scholar
  17. 17.
    G. L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer and System Sciences, 13:300–317, 1976.MATHMathSciNetGoogle Scholar
  18. 18.
    M. Ogiwara and L. A. Hemachandra. A complexity theory of feasible closure properties. Journal of Computer and System Sciences, 46:295–325, 1993.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, 1994.Google Scholar
  20. 20.
    J. Simon. On Some Central Problems in Computational Complexity. PhD thesis, Cornell University, Ithaca, 1975.Google Scholar
  21. 21.
    L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:1–22, 1977.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    L. G. Valiant. Relative complexity of checking and evaluation. Information Processing Letters, 5:20–23, 1976.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    L. G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Computing, 8(3):411–421, 1979.CrossRefMathSciNetGoogle Scholar
  24. 24.
    H. Vollmer and K. W. Wagner. Complexity classes of optimization functions. Information and Computation, 120:198–219, 1995.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Lane A. Hemaspaandra
    • 1
  • Sven Kosub
    • 2
  • Klaus W. Wagner
    • 2
  1. 1.Department of Computer ScienceUniversity of RochesterRochesterUSA
  2. 2.Theoretische InformatikJulius-Maximilians-Universität WürzburgAm HublandGermany

Personalised recommendations