Advertisement

Minimal Tail-Biting Trellises for Certain Cyclic Block Codes Are Easy to Construct

  • Priti Shankar
  • P.N.A. Kumar
  • Harmeet Singh
  • B.S. Rajan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2076)

Abstract

We give simple algorithms for the construction of generator matrices for minimal tail-biting trellises for a powerful and practical subclass of the linear cyclic codes, from which the combinatorial representation in the form of a graph can be obtained by standard procedures.

Keywords

linear block codes cyclic codes Reed-Solomon codes tail-biting trellises 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, Optimal decoding of linear codes for minimizing symbol error rate, IEEE Trans. Inform. Theory 20(2), March 1974, pp 284–287.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A.R. Calderbank, G.David Forney,Jr., and Alexander Vardy, Minimal Tail-Biting Trellises: The Golay Code and More, IEEE Trans. Inform. Theory 45(5) July 1999, pp 1435–1455.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    G.D. Forney, Jr. and M.D. Trott, The dynamics of group codes:State spaces, trellis diagrams and canonical encoders, IEEE Trans. Inform. Theory 39(5) Sept 1993, pp 1491–1513.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Harmeet Singh, On Tail-Biting Trellises for Linear Block Codes, M.E. Thesis, Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, 2001.Google Scholar
  5. 5.
    Ralf Kotter and Vardy, A.,Construction of Minimal Tail-Biting Trellises, in Proceedings IEEE Information Theory Workshop (Killarney, Ireland, June 1998), 72–74.Google Scholar
  6. 6.
    F.R. Kschischang and V. Sorokine, On the trellis structure of block codes, IEEE Trans. Inform. Theory 41(6), Nov 1995, pp 1924–1937.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    F.J. MacWilliams and N.J.A. Sloane,The Theory of Error Correcting Codes, North-Holland, Amsterdam, 1981Google Scholar
  8. 8.
    J.L. Massey, Foundations and methods of channel encoding, in Proc. Int. Conf. on Information Theory and Systems 65(Berlin, Germany) Sept 1978.Google Scholar
  9. 9.
    R.J. McEliece, On the BCJR trellis for linear block codes, IEEE Trans. Inform. Theory 42, November 1996, pp 1072–1092.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    D.J. Muder, Minimal trellises for block codes, IEEE Trans. Inform. Theory 34 (5), Sept 1988, pp 1049–1053.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Priti Shankar, P.N.A. Kumar, K. Sasidharan and B.S. Rajan, ML decoding of block codes on their tail-biting trellises, to appear in Proceedings of the 2001 IEEE International Symposium on Information Theory.Google Scholar
  12. 12.
    Yaron Shany and Yair Be’ery, Linear Tail-Biting Trellises, the Square-Root Bound, and Applications for Reed-Muller Codes, IEEE Trans. Inform. Theory 46 (4), July 2000, pp 1514–1523.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    A. Vardy, Trellis structure of codes, in Handbook of Coding Theory,V.S. Pless and W.C. Huffman, Eds., Elsevier Science, 1998.Google Scholar
  14. 14.
    N. Wiberg, H.-A. Loeliger and R. Kotter, Codes and iterative decoding on general graphs, Eoro. Trans. Telecommun.,6, Sept 1995, pp 513–526.CrossRefGoogle Scholar
  15. 15.
    J.K. Wolf, Efficient maximum-likelihood decoding of linear block codes using a trellis, IEEE Trans. Inform. Theory 24, pp 76–80.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Priti Shankar
    • 1
  • P.N.A. Kumar
    • 1
  • Harmeet Singh
    • 1
  • B.S. Rajan
    • 1
  1. 1.Indian Institute of ScienceBangalore

Personalised recommendations