Advertisement

Decision Questions Concerning Semilinearity, Morphisms, and Commutation of Languages

  • Tero Harju
  • Oscar Ibarra
  • Juhani Karhumäki
  • Arto Salomaa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2076)

Abstract

Let ℭ be a class of automata (in a precise sense to be defined) and ℭc the class obtained by augmenting each automaton in ℭ with finitely many reversal-bounded counters. We first show that if the languages defined by ℭ are effectively semilinear, then so are the languages defined by ℭc, and, hence, their emptiness problem is decidable. This result is then used to show the decidability of various problems concerning morphisms and commutation of languages. We also prove a surprising undecidability result: given a fixed two element code K, it is undecidable whether a given context-free language L commutes with K, i.e., LK = KL.

Keywords

Reversal-bounded counters context-free languages combinatorics on words commutation of languages morphisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BCCC96]
    L. Breveglieri, A. Cherubini, C. Citrini, and S. Crespi Reghizzi. Multiple pushdown languages and grammars. Internat. J. Found. Comput. Sci. 7 (1996), 253–291.zbMATHCrossRefGoogle Scholar
  2. [ChK97]
    C. Choffrut and J. Karhumäki, Combinatorics of words, in Handbook of Formal Languages, Vol. 1, (A. Salomaa and G. Rozenberg, eds.), Springer-Verlag, 1997, pp. 329–438.Google Scholar
  3. [ChK99]
    C. Choffrut and J. Karhumäki. Characterizing the subsets of words commuting with a set of two words. Proc. 7th Nordic Combinatorial Conference, Turku, Finland, 1999.Google Scholar
  4. [ChKO99]
    C. Choffrut, J. Karhumäki, and N. Ollinger. The commutation of finite sets: challenging problem. Theoret. Comput. Sci., to appear; TUCS Technical Report 303, http://www.tucs.fi, 1999.
  5. [CS78]
    K. Culik II and A. Salomaa. On the decidability of homomorphism equivalence for languages. J. Comput. System Sci. 17, (1978), 163–175.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [D00]
    Z. Dang. Verification and Debugging of Infinite State Real-time Systems. Ph.D. Thesis, University of California, Santa Barbara, 2000.Google Scholar
  7. [Gi66]
    S. Ginsburg. The Mathematical Theory of Context-Free Languages. McGraw-Hill, New York, 1966.zbMATHGoogle Scholar
  8. [Gr68]
    S. A. Greibach. Checking automata and one-way stack languages. SDC Document TM 738/045/00, 1968.Google Scholar
  9. [GuI81]
    E. M. Gurari and O. H. Ibarra. The complexity of decision problems for finite-turn multicounter machines. J. Comput. System Sci. 22 (1981), 220–229.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [HalH98]
    V. Halava and T. Harju. Undecidability in integer weighted finite automata. Fund. Inf. 38 (1999), 189–200.zbMATHMathSciNetGoogle Scholar
  11. [Har78]
    M. Harrison. Introduction to Formal Language Theory. Addison-Wesley, Reading, Mass., 1978.zbMATHGoogle Scholar
  12. [HoKK87]
    S. Horvath, J. Karhumä and H. C. M. Kleijn. Results concerning palindromicity. J. Int. Process. Cyber. EIK 23 (1987), 441–451.zbMATHGoogle Scholar
  13. [I78]
    O. H. Ibarra. Reversal-bounded multicounter machines and their decision problems. J. ACM 25 (1978), 116–133.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [IBS00]
    O. H. Ibarra, T. Bultan, and J. Su. Reachability analysis for some models of infinite-state transition systems. Proc. 10th Int. Conf. on Concurrency Theory, 2000.Google Scholar
  15. [IJTW95]
    O. H. Ibarra, T. Jiang, N. Tran, and H. Wang. New decidability results concerning two-way counter machines. SIAM J. Comput. 24 (1995), 123–137.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [KL00]
    J. Karhumäki and L. P. Lisovik. A simple undecidable problem: the inclusion problem for finite substitutions on ab * c. Proc. of the STACS 2001, to appear.Google Scholar
  17. [L83]
    M. Lothaire, Combinatorics on Words, Addison-Wesley, 1983.Google Scholar
  18. [P66]
    R. Parikh. On context-free languages. J. ACM 13 (1966), 570–581.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [Sa73]
    A. Salomaa. Formal Languages. Academic Press, New York, 1973.zbMATHGoogle Scholar
  20. [Se97]
    G. Sénizergues. L(A)=L(B)? decidability results from complete formal systems. Theoret. Comput. Sci. 251 (2001), 1–166.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [St00]
    C. Stirling. Decidability of DPDA equivalence. Theoret. Comput. Sci., to appear.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Tero Harju
    • 1
  • Oscar Ibarra
    • 2
  • Juhani Karhumäki
    • 3
  • Arto Salomaa
    • 4
  1. 1.Department of Mathematics and Turku Centre for Computer ScienceUniversity of TurkuTurkuFinland
  2. 2.Department of Computer ScienceUniversity of CaliforniaSanta Barbara
  3. 3.Department of Mathematics and Turku Centre for Computer ScienceUniversity of TurkuTurkuFinland
  4. 4.Turku Centre for Computer ScienceTurkuFinland

Personalised recommendations