Data-Refinement for Call-By-Value Programming Languages

  • Yoshiki Kinoshita
  • John Power
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1683)


We give a category theoretic framework for data-refinement in call-by-value programming languages. One approach to data refinement for the simply typed λ-calculus is given by generalising the notion of logical relation to one of lax logical relation, so that binary lax logical relations compose. So here, we generalise the notion of lax logical relation, defined in category theoretic terms, from the simply typed ?- calculus to the computational λ-calculus as a model of data refinement.


Program Language Logical Relation Monoidal Category Denotational Semantic Basic Lemma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fiore, M., Plotkin, G.D.: An axiomatisation of computationally adequate domain-theoretic models of FPC. Proc LICS 94. IEEE Press (1994) 92–102.Google Scholar
  2. 2.
    Gardiner, P.H.B., Morgan, C.:A single complete rule for data refinement. Formal Aspects of Computing 5 (1993) 367–382.Google Scholar
  3. 3.
    Hermida, C.A.: Fibrations, Logical Predicates and Indeterminates. Ph.D. thesis. Edinburgh (1993) available as ECS-LFCS-93-277.Google Scholar
  4. 4.
    Hoare, C.A.R.: Proof of correctness of data representations. Acta Informatica 1 (1972) 271–281.Google Scholar
  5. 5.
    Hoare, C.A.R.: Data refinement in a categorical setting. (1987) (draft).Google Scholar
  6. 6.
    Hoare, C.A.R., Jifeng, H.: Data refinement in a categorical setting. (1990) (draft).Google Scholar
  7. 7.
    Honsell, F., Sannella, D.T.: Pre-logical relations. Proc. CSL 99 (in this volume).Google Scholar
  8. 8.
    Johnstone, P.T., Power, A.J., Tsujishita, T., Watanabe, H., Worrell, J.: An Axiomatics for Categories of Transition Systems as Coalgebras. Proc LICS 98. IEEE Press (1998) 207–213.Google Scholar
  9. 9.
    Kelly, G.M.: Basic concepts of enriched category theory. Cambridge University Press (1982).Google Scholar
  10. 10.
    Kinoshita, Y., O’Hearn, P., Power, A.J., Takeyama, M., Tennent, R.D.: An Axiomatic Approach to Binary Logical Relations with Applications to Data Refinement. Proc TACS 97. LNCS 1281. Abadi and Ito (eds.) Springer (1997) 191–212.Google Scholar
  11. 11.
    Kinoshita, Y., Power, A.J.: Data refinement and algebraic structure. Acta Informatica (to appear).Google Scholar
  12. 12.
    Kinoshita, Y., Power, A.J., Takeyama, M.: Sketches. J. Pure Appl. Algebra (to appear).Google Scholar
  13. 13.
    Kinoshita, Y., Power, A.J., Watanabe, H.: A general completeness result in refinement (submitted).Google Scholar
  14. 14.
    Lambek, J., Scott, P.J.: Introduction to Higher-Order Categorical Logic, Cambridge Studies in Advanced Mathematics 7. CUP (1986).Google Scholar
  15. 15.
    Ma, Q., Reynolds, J.C.: Types, abstraction and parametric polymorphism 2. Math. Found. of Prog. Lang. Sem. Lecture Notes in Computer Science. Springer (1991).Google Scholar
  16. 16.
    Mitchell, J.: Foundations for programming languages. Foundations of Computing Series. MIT Press (1996).Google Scholar
  17. 17.
    Moggi, E.: Computational Lambda-calculus and Monads. Proc LICS 89. IEEE Press (1989) 14–23.Google Scholar
  18. 18.
    Naumann, D.A.: Data refinement, call by value, and higher order programs. Formal Aspects of Computing 7 (1995) 752–762.Google Scholar
  19. 19.
    Power, A.J.: Premonoidal categories as categories with algebraic structure. Theoretical Computer Science (to appear).Google Scholar
  20. 20.
    Plotkin, G.D., Power, A.J., Sannella, D.T.: A generalised notion of logical relations. (submitted).Google Scholar
  21. 21.
    Power, A.J., Robinson, E.P. Premonoidal categories and notions of computation. Math. Structures in Computer Science 7 (1997) 453–468.Google Scholar
  22. 22.
    Power, A.J., Thielecke, H.: Environments, Continuation Semantics and Indexed Categories. Proc TACS 97. LNCS 1281 Abadi and Ito (eds) (1997) 391–414Google Scholar
  23. 23.
    Tennent, R.D.: Correctness of data representations in ALGOL-like languages. In: A Classical Mind, Essays in Honour of C.A.R. Hoare, A.W. Roscoe (ed.) Prentice-Hall (1994) 405–417.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Yoshiki Kinoshita
    • 1
  • John Power
    • 2
  1. 1.Electrotechnical LaboratoryTsukuba-shiJapan
  2. 2.Laboratory for the Foundations of Computer ScienceUniversity of EdinburghKing’s BuildingsScotland

Personalised recommendations