Signed Interval Logic

  • Thomas Marthedal Rasmussen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1683)


Signed Interval Logic (SIL) is an extension of Interval Temporal Logic (ITL) with the introduction of the notion of a direction of an interval.

We develop syntax, semantics, and proof system of SIL, and show that this proof system is sound and complete. The proof system of SIL is not more complicated than that of ITL but SIL is (contrary to ITL) capable of specifying liveness properties. Other interval logics capable of this (such as Neighbourhood Logic) have more complicated proof systems.

We discuss how to define future intervals in SIL for the specification of liveness properties.

To characterize the expressive power of SIL we relate SIL to arrow logic and relational algebra.


interval logic temporal intervals arrow logic real-time systems liveness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.F. Allen. Maintaining Knowledge about Temporal Intervals. Communications of the ACM, 26(11):832–843, 1983.zbMATHCrossRefGoogle Scholar
  2. 2.
    B. Dutertre. Complete Proof Systems for First Order Interval Temporal Logic. In LICS’95, pages 36–43. IEEE Press, 1995.Google Scholar
  3. 3.
    M. Engel and H. Rischel. Dagstuhl-Seminar Specification Problem-a Duration Calculus Solution. Dept. of Computer Science, Technical University of Denmark-Private Communication, 1994.Google Scholar
  4. 4.
    J.Y. Halpern, B. Moszkowski, and Z. Manna. A Hardware Semantics based on Temporal Intervals. In ICALP’83, volume 154 of LNCS, pages 278–291. Springer, 1983.Google Scholar
  5. 5.
    J.Y. Halpern and Y. Shoham. A Propositional Modal Logic of Time Intervals. Journal of the ACM, 38(4):935–962, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M.R. Hansen and Zhou Chaochen. Duration Calculus: Logical Foundations. Formal Aspects of Computing, 9(3):283–330, 1997.zbMATHCrossRefGoogle Scholar
  7. 7.
    G.E. Hughes and M.J. Cresswell. An Introduction to Modal Logic. Routledge, 1968.Google Scholar
  8. 8.
    H.R. Lewis. A Logic of Concrete Time Intervals. In LICS’90, pages 380–389. IEEE Press, 1990.Google Scholar
  9. 9.
    M. Marx and Y. Venema. Multi-Dimensional Modal Logic, volume 4 of Applied Logic Series. Kluwer Academic Publishers, 1997.Google Scholar
  10. 10.
    E. Mendelson. Introduction to Mathematical Logic. Wadsworth & Brooks/Cole Advanced Books & Software, 3. edition, 1987.Google Scholar
  11. 11.
    B. Moszkowski. A Temporal Logic for Multilevel Reasoning about Hardware. IEEE Computer, 18(2):10–19, 1985.Google Scholar
  12. 12.
    B. Moszkowski. Some Very Compositional Temporal Properties. In Programming Concepts, Methods, and Calculi, volume A-56 of IFIP Transactions, pages 307–326. North Holland, 1994.Google Scholar
  13. 13.
    Y.S. Ramakrishna, P.M. Melliar-Smith, L.E. Moser, L.K. Dillon, and G. Kutty. Interval logics and their decision procedures. Part I: An interval logic. Theoretical Computer Science, 166:1–47, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Y.S. Ramakrishna, P.M. Melliar-Smith, L.E. Moser, L.K. Dillon, and G. Kutty. Interval logics and their decision procedures. Part II: A real-time interval logic. Theoretical Computer Science, 170:1–46, 1996.zbMATHMathSciNetGoogle Scholar
  15. 15.
    T.M. Rasmussen. Signed Interval Logic. Master’s thesis, Dept. of Information Technology, Technical University of Denmark, January 1999.Google Scholar
  16. 16.
    T.M. Rasmussen. Signed Interval Logic on Totally Ordered Domains. Note, Dept. of Information Technology, Technical University of Denmark, June 1999.Google Scholar
  17. 17.
    R. Rosner and A. P nueli. A Choppy Logic. In LICS’86, pages 306–313. IEEE Press, 1986.Google Scholar
  18. 18.
    G. Schmidt and T. Ströhlein. Relations and Graphs. Springer, 1993.Google Scholar
  19. 19.
    Y. Venema. Expressiveness and Completeness of an Interval Tense Logic. Notre Dame Journal of Formal Logic, 31(4):529–547, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Y. Venema. A Modal Logic for Chopping Intervals. Journal of Logic and Computation, 1(4):453–476, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Zhou Chaochen and M.R. Hansen. An Adequate First Order Interval Logic. In COMPOS’97, volume 1536 of LNCS, pages 584–608. Springer, 1998.Google Scholar
  22. 22.
    Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A Calculus of Durations. Information Processing Letters, 40(5):269–276, 1991.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Thomas Marthedal Rasmussen
    • 1
  1. 1.Department of Information TechnologyTechnical University of DenmarkLyngbyDenmark

Personalised recommendations