Advertisement

Data Decision Diagrams for Petri Net Analysis

  • Jean-Michel Couvreur
  • Emmanuelle Encrenaz
  • Emmanuel Paviot-Adet
  • Denis Poitrenaud
  • Pierre-André Wacrenier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2360)

Abstract

This paper presents a new data structure, the Data Decision Diagrams, equipped with a mechanism allowing the definition of application-specific operators. This mechanism is based on combination of inductive linear functions offering a large expressiveness while alleviating for the user the burden of hard coding traversals in a shared data structure. We demonstrate the pertinence of our system through the implementation of a verification tool for various classes of Petri nets including self modifying and queuing nets.

Topics

Petri Nets Decision Diagram System verification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers, 35(8):677–691, August 1986.Google Scholar
  2. 2.
    G. Ciardo, G. Lüttgen, and R. Siminiceanu. Efficient symbolic state-space construction for asynchronous systems. In Proc. of ICATPN’2000, volume 1825 of Lecture Notes in Computer Science, pages 103–122. Springer Verlag, 2000.Google Scholar
  3. 3.
    J. M. Couvreur and E. Paviot-Adet. New structural invariants for Petri nets analysis. In Proc. of ICATPN’94, volume 815 of Lecture Notes in Computer Science, pages 199–218. Springer Verlag, 1994.Google Scholar
  4. 4.
    H. Hulgaard, P. F. Williams, and H. R. Andersen. Equivalence checking of combinational circuits using boolean expression diagrams. IEEE Transactions of Computer-Aided Design, 18(7), July 1999.Google Scholar
  5. 5.
    T. Kolks, B. Lin, and H. De Man. Sizing and verification of communication buffers for communicating processes. In Proc. of IEEE International Conference on Computer-Aided Design, volume 1825, pages 660–664, Santa Clara, USA, November 1993.Google Scholar
  6. 6.
    S. Minato, N. Ishiura, and S. Yajima. Shared binary decision diagrams with attributed edges for efficient boolean function manipulation. In L. J.M Claesen, editor, Proceedings of the 27th ACM/IEEE Design Automation Conference, DAC’90, pages 52–57, June 1990.Google Scholar
  7. 7.
    A. S. Miner and G. Ciardo. Efficient reachability set generation and storage using decision diagrams. In Proc. of ICATPN’99, volume 1639 of Lecture Notes in Computer Science, pages 6–25. Springer Verlag, 1999.Google Scholar
  8. 8.
    E. Pastor, O. Roig, J. Cortadella, and R. M. Badia. Petri net analysis using boolean manipulation. In Proc. of ICATPN’94, volume 815 of Lecture Notes in Computer Science, pages 416–435. Springer Verlag, 1994.Google Scholar
  9. 9.
    R. Valk. Bridging the gap between place-and floyd-invariants with applications to preemptive scheduling. In Proc. of ICATPN’93, volume 691 of Lecture Notes in Computer Science, pages 432–452. Springer Verlag, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Jean-Michel Couvreur
    • 1
  • Emmanuelle Encrenaz
    • 2
  • Emmanuel Paviot-Adet
    • 2
  • Denis Poitrenaud
    • 2
  • Pierre-André Wacrenier
    • 1
  1. 1.LaBRIUniversité Bordeaux 1TalenceFrance
  2. 2.LIP6Université Pierre et Marie CurieParisFrance

Personalised recommendations