Token-Controlled Place Refinement in Hierarchical Petri Nets with Application to Active Document Workflow

  • David G. Stork
  • Rob van Glabbeek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2360)


We propose extensions to predicate/transition nets to allow tokens to carry both data and control information, where such control can refine special “refinable place nodes” in the net. These formal extensions find use in active document workflow, in which documents themselves specify portions of the overall processing within a workflow net. Our approach enables the workflow designer to specify which places of the target predicate/transition net may be refined and it enables the document author to specify how these places will be refined (via attachment of a token-generated “refinement net”). This apportionment of the overall task allows the workflow designer to set general constraints within which the document author can control the processing; it prevents conflicts between them in foreseeable practical cases. Refinable places are augmented with a permission structure specifying which document authors can refine that place and which document tokens can execute a node’s refinement net. Our refined nets have a hierarchical structure which can be represented by bipartite trees.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wil M. P. van der Aalst. Three good reasons for using a Petri-net-based workflow management system. In Information and process integration in enterprises: Rethinking documents, pages 161–182. Kluwer Academic, Norwell, MA, 1998.Google Scholar
  2. 2.
    Wil M. P. van der Aalst. Interorganizational workflows: An approach based on message sequence charts and Petri nets. Systems analysis — Modelling — Simulation, 35(3):345–357, 1999.MATHGoogle Scholar
  3. 3.
    Wil M. P. van der Aalst, Jörg Desel, and Andreas Oberweis, editors. Business Process Management: Models, Techniques, and Empirical Studies. Springer, New York, NY, 2000.Google Scholar
  4. 4.
    Luca Aceto and Matthew Hennessy. Adding action refinement to a finite process algebra. Information and Computation, 115(2):179–247, 1994.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Eric Badouel and Javier Oliver. Reconfigurable nets, a class of high level Petri nets supporting dynamic changes. (WFM) Workshop within the 19th International Conference on Applications and Theory of Petri Nets, pages 129–145, 1999.Google Scholar
  6. 6.
    Michel Bauderon and Bruno Courcelle. Graph expressions and graph rewriting. Mathematical Systems Theory, 20(83–127), 1987.Google Scholar
  7. 7.
    Wilfried Brauer, Robert Gold, and Walter Vogler. A survey of behaviour and equivalence preserving refinement of Petri nets. In Grzegorz Rozenberg, editor, Advances in Petri Nets 1990, number 483 in LNCS, 1991.Google Scholar
  8. 8.
    R. Kent Dybvig. The Scheme programming language: ANSI Scheme. Prentice Hall, Upper Saddle River, NJ, 1996.Google Scholar
  9. 9.
    Hartmann J. Genrich. Predicate/transition nets. In Advances in Petri Nets 1986, volume 254 of LNCS, pages 207–2471. Springer-Verlag, 1987.Google Scholar
  10. 10.
    Hartmann J. Genrich and Kurt Lautenbach. System modelling with high-level Petri nets. Theoretical Computer Science, 13(1):109–136, 1981.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Rob van Glabbeek and Ursula Goltz. Refinement of actions in causality based models. In Jaco W. de Bakker, Willem Paul de Roever, and Grzegorz Rozenberg, editors, Proceedings REX Workshop on Stepwise Refinement of Distributed Systems: Models, Formalism, Correctness, Mook, The Netherlands, May/June 1989, volume 430 of Lecture Notes in Computer Science (LNCS), pages 267–300. Springer, 1990.Google Scholar
  12. 12.
    Rob van Glabbeek and W. Peter Weijland. Branching time and abstraction in bisimulation semantics. Journal of the ACM, 43(3):555–600, 1996.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Kurt Jensen. Coloured Petri nets and the invariant-method. Theoretical Computer Science, 14(3):317–336, 1981.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kurt Jensen. Coloured Petri Nets-Basic Concepts, Analysis Methods and Practical Use, Vol. 1. Springer-Verlag, 1992.Google Scholar
  15. 15.
    Donald E. Knuth. TEX: The Program, Computers and Typesetting. Addison-Wesley, Reading, MA, 1986.Google Scholar
  16. 16.
    Frank Leymann and Dieter Roller. Production Workflow: Concepts and Techniques. Prentice Hall, Upper Saddle River, NJ, 2000.MATHGoogle Scholar
  17. 17.
    Michael Köhler, Daniel Moldt, and Heiko Rölke. Liveness preserving composition of agent Petri nets. Technical report, Universität Hamburg, Fachbereich Informatik, 2001.Google Scholar
  18. 18.
    Michael Köhler, Daniel Moldt, and Heiko Rölke. Modelling the structure and behaviour of Petri net agents. In José-Manuel Colom and Maciej Koutny, editors, Applications and Theory of Petri Nets 2001, pages 224–241, 2001.Google Scholar
  19. 19.
    Robin Milner. Communicating and Mobile Systems: The π-calculus. Cambridge University Press, Cambridge, UK, 1999.Google Scholar
  20. 20.
    Ethan Mirsky and Andre DeHon. MATRIX: A reconfigurable computing architecture with configurable instruction distribution and deployable resources. In Peter Athanas and Kevin L. Pocek, editors, Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, pages 157–166, 1996.Google Scholar
  21. 21.
    Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4):541–580, 1989.CrossRefGoogle Scholar
  22. 22.
    Wolfgang Reisig. Elements of Distributed Algorithms: Modeling and analysis with Petri nets. Springer, Berlin, Germany, 1998.MATHGoogle Scholar
  23. 23.
    Einar Smith. Principles of high-level Petri nets. In Wolfgang Reisig and Grzegorz Rozenberg, editors, Lectures on Petri nets I: Basic models, volume 1491 of Advances in Petri nets, pages 174–210. Springer, 1998.Google Scholar
  24. 24.
    Robert Valette. Analysis of Petri nets by stepwise refinements. Journal of Computer and System Sciences, 18(1):35–46, 1979.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Rüdiger Valk. Self-modifying nets, a natural extension of Petri nets. In Proceedings ICALP’ 78, volume 62 of Lecture Notes in Computer Science (LNCS), pages 464–476. Springer, 1978.Google Scholar
  26. 26.
    Rüdiger Valk. Petri nets as token objects: An introduction to elementary object nets. In Jörg Desel and Manual Silva, editors, Application and Theory of Petri Nets, volume 1420 of Lecture Notes in Computer Science (LNCS), pages 1–25. Springer, 1989.Google Scholar
  27. 27.
    Patrick Henry Winston and Berthold Klaus Paul Horn. Lisp. Addison-Wesley, Reading, MA, third edition, 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • David G. Stork
    • 1
  • Rob van Glabbeek
    • 2
  1. 1.Ricoh California Research CenterMenlo Park
  2. 2.Department of Computer ScienceStanford UniversityStanford

Personalised recommendations