Cooperation of Multiple Strategies for Automated Learning in Complex Environments

  • Floriana Esposito
  • Stefano Ferilli
  • Nicola Fanizzi
  • Teresa Maria Altomare Basile
  • Nicola Di Mauro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2366)

Abstract

This work presents a new version of the incremental learning system INTHELEX, whose multistrategy learning capabilities have been further enhanced. To improve effectiveness and efficiency of the learning process, pure induction and abduction have been augmented with abstraction and deduction. Some results proving the benefits that the addition of each strategy can bring are also reported. INTHELEX will be the learning component in the architecture of the EU project COLLATE, dealing with cultural heritage documents.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. M. Becker. Inductive learning of decision rules with exceptions: Methodology and experimentation. B.s. diss., Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 1985. UIUCDCS-F-85-945.Google Scholar
  2. [2]
    H. Brocks, U. Thiel, A. Stein, and A. Dirsch-Weigand. Customizable retrieval functions based on user tasks in the cultural heritage domain. In Research and Advanced Technology for Digital Libraries. Proceedings of ECDL2001, Lecture Notes in Computer Science. Springer, 2001.Google Scholar
  3. [3]
    F. Esposito, N. Fanizzi, S. Ferilli, and G. Semeraro. Abduction and abstraction in inductive learning. In Proceedings of the 5th International Workshop on Mul-tistrategy Learning, Guimarães, Portugal, 2000.Google Scholar
  4. [4]
    F. Esposito, N. Fanizzi, S. Ferilli, and G. Semeraro. Oi-implication: Soundness and refutation completeness. In Proceedings of the 17th International Joint Conference on Artificial Intelligence, pages 847–852, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers.Google Scholar
  5. [5]
    F. Esposito, G. Semeraro, N. Fanizzi, and S. Ferilli. Multistrategy Theory Revision: Induction and abduction in INTHELEX. Machine Learning Journal, 38(1/2):133–156, 2000.MATHCrossRefGoogle Scholar
  6. [6]
    S. Ferilli. A Framework for Incremental Synthesis of Logic Theories: An Application to Document Processing. Ph.D. thesis, Dipartimento di Informatica, Università di Bari, Bari, Italy, November 2000.Google Scholar
  7. [7]
    R.T. Kouzes, J.D. Myers, and W.A. Wulf. Collaboratories: Doing science on the internet. IEEE Computer, 29(8), 1996.Google Scholar
  8. [8]
    E. Lamma, P. Mello, F. Riguzzi, F. Esposito, S. Ferilli, and G. Semeraro. Cooperation of abduction and induction in logic programming. In A. C. Kakas and P. Flach, editors, Abductive and Inductive Reasoning: Essays on their Relation and Integration. Kluwer, 2000.Google Scholar
  9. [9]
    J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, second edition, 1987.MATHGoogle Scholar
  10. [10]
    R.S. Michalski. Inferential theory of learning. developing foundations for multi-strategy learning. In R.S. Michalski and G. Tecuci, editors, Machine Learning. A Multistrategy Approach, volume IV, pages 3–61. Morgan Kaufmann, San Mateo, CA, 1994.Google Scholar
  11. [11]
    F. Sebastiani. Machine learning in automated text categorization. Technical Report Technical Report IEI:B4-31-12-99, CNR-IEI, Pisa, Italy, December 1999. Rev. 2001.Google Scholar
  12. [12]
    G. Semeraro, F. Esposito, D. Malerba, N. Fanizzi, and S. Ferilli. A logic framework for the incremental inductive synthesis of Datalog theories. In N.E. Fuchs, editor, Proceedings of 7th International Workshop on Logic Program Synthesis and Transformation-LOPSTR97, volume 1463 of LNCS, pages 300–321. Springer, 1998.CrossRefGoogle Scholar
  13. [13]
    G. Semeraro, N. Fanizzi, S. Ferilli, and F. Esposito. Document classification and interpretation through the inference of logic-based models. In P. Constan-topoulos and I.T. Sølvberg, editors, Research and Advanced Technology for Digital Libraries, number 2163 in Lecture Notes in Computer Science, pages 59–70. Springer-Verlag, 2001.CrossRefGoogle Scholar
  14. [14]
    J.-D. Zucker. Semantic abstraction for concept representation and learning. In R. S. Michalski and L. Saitta, editors, Proceedings of the 4th International Work-on Multistrategy Learning, Desenzano del Garda, Italy, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Floriana Esposito
    • 1
  • Stefano Ferilli
    • 1
  • Nicola Fanizzi
    • 1
  • Teresa Maria Altomare Basile
    • 1
  • Nicola Di Mauro
    • 1
  1. 1.Dipartimento di InformaticaUniversità di BariBariItalia

Personalised recommendations