Solving Geometric Problems with Real Quantifier Elimination

  • Andreas Dolzmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1669)

Abstract

Many problems arising in real geometry can be formulated as first-order formulas. Thus quantifier elimination can be used to solve these problems. In this note, we discuss the applicability of implemented quantifier elimination algorithms for solving geometrical problems. In particular, we demonstrate how the tools of redlog can be applied to solve a real implicitization problem, namely the Enneper surface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dennis S. Arnon, George E. Collins, and Scott McCallum. Cylindrical algebraic decomposition I: The basic algorithm. SIAM Journal on Computing, 13(4):865–877, November 1984. 16CrossRefMathSciNetGoogle Scholar
  2. 2.
    Eberhard Becker. Sums of squares and quadratic forms in real algebraic geometry. In Cahiers du Séminaire d’Historie de Mathématiques, volume 1, pages 41–57. Université Pierre et Marie Curie, Laboratoire de Mathématiques Fondamentales, Paris, 1991. 18Google Scholar
  3. 3.
    Eberhard Becker and Thorsten Wörmann. On the trace formula for quadratic forms. In William B. Jacob, Tsit-Yuen Lam, and Robert O. Robson, editors, Recent Advances in Real Algebraic Geometry and Quadratic Forms, volume 155 of Contemporary Mathematics, pages 271–291. American Mathematical Society, Providence, Rhode Island, 1994. Proceedings of the RAGSQUAD Year, Berkeley, 1990–1991. 18Google Scholar
  4. 4.
    Christopher W. Brown. Simplification of truth-invariant cylindrical algebraic decompositions. In Oliver Gloor, editor, Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation (ISSAC 98), pages 295–301, Rostock, Germany, August 1998. ACM Press, New York. 16CrossRefGoogle Scholar
  5. 5.
    Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Doctoral dissertation, Mathematical Institute, University of Innsbruck, Innsbruck, Austria, 1965. 18, 20Google Scholar
  6. 6.
    George E. Collins. Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic decomposition. In H. Brakhage, editor, Automata Theory and Formal Languages. 2nd GI Conference, volume 33 of Lecture Notes in Computer Science, pages 134–183. Gesellschaft für Informatik, Springer-Verlag, Berlin, Heidelberg, New York, 1975. 16Google Scholar
  7. 7.
    George E. Collins and Hoon Hong. Partial cylindrical algebraic decomposition for quantifier elimination. Journal of Symbolic Computation, 12(3):299–328, Septemberb 1991. 16MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    David Cox, John Little, and Donald O’Shea. Ideals, Varieties and Algorithms.Undergraduate Texts in Mathematics. Springer-Verlag, New York, Berlin, Heidelberg, 1992. 22, 24Google Scholar
  9. 9.
    Andreas Dolzmann. Reelle Quantorenelimination durch parametrisches Zählen von Nullstellen. Diploma thesis, Universität Passau, D-94030 Passau, Germany, November 1994. 18Google Scholar
  10. 10.
    Andreas Dolzmann and Thomas Sturm. Redlog: Computer algebra meets computer logic. ACM SIGSAM Bulletin, 31(2):2–9, June 1997. 17, 21CrossRefMathSciNetGoogle Scholar
  11. 11.
    Andreas Dolzmann and Thomas Sturm. Simplification of quantifier-free formulae over ordered fields. Journal of Symbolic Computation, 24(2):209–231, August 1997. 17, 18, 19MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Andreas Dolzmann and Thomas Sturm. P-adic constraint solving. Technical Report MIP-9901, FMI, Universität Passau, D-94030 Passau, Germany, January 1999. To appear in the proceedings of the ISSAC 99. 21Google Scholar
  13. 13.
    Andreas Dolzmann, Thomas Sturm, and Volker Weispfenning. A new approach for automatic theorem proving in real geometry. Journal of Automated Reasoning, 21(3):357–380, 1998. 15, 18MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Andreas Dolzmann, Thomas Sturm, and Volker Weispfenning. Real quantifier elimination in practice. In B. H. Matzat, G.-M. Greuel, and G. Hiss, editors, Algorithmic Algebra and Number Theory, pages 221–247. Springer, Berlin, 1998. 15Google Scholar
  15. 15.
    Charles Hermite. Remarques sur le théorème de M. Sturm. In Emile Picard, editor, OEuvres des Charles Hermite, volume 1, pages 284–287. Gauthier-Villars, Paris, 1905. 18Google Scholar
  16. 16.
    Hoon Hong. An improvement of the projection operator in cylindrical algebraic decomposition. In Shunro Watanabe and Morio Nagata, editors, Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC 90), pages 261–264, Tokyo, Japan, August 1990. ACM Press, New York. 16CrossRefGoogle Scholar
  17. 17.
    Hoon Hong. Simple solution formula construction in cylindrical algebraic decomposition based quantifier elimination. In Paul S. Wang, editor, Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC 92), pages 177–188, Berkeley, CA, July 1992. ACM Press, New York. 16Google Scholar
  18. 18.
    Rüdiger Loos and Volker Weispfenning. Applying linear quantifier elimination. The Computer Journal, 36(5):450–462, 1993. Special issue on computational quantifier elimination. 17MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Paul Pedersen. Counting Real Zeros. Ph.D. dissertation, Courant Institute of Mathematical Sciences, New York, 1991. 18Google Scholar
  20. 20.
    Paul Pedersen, Marie-Françoise Roy, and Aviva Szpirglas. Counting real zeroes in the multivariate case. In F. Eysette and A. Galigo, editors, Computational Algebraic Geometry, volume 109 of Progress in Mathematics, pages 203–224. Birkhäuser, Boston, Basel; Berlin, 1993. Proceedings of the MEGA 92. 18Google Scholar
  21. 21.
    Alfred Tarski. A decision method for elementary algebra and geometry. Technical report, RAND, Santa Monica, CA, 1948. 14MATHGoogle Scholar
  22. 22.
    Volker Weispfenning. The complexity of linear problems in fields. Journal of Symbolic Computation, 5(1–2):3–27, February-April 1988. 17MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Volker Weispfenning. Quantifier elimination for real algebra-the quadratic case and beyond. Applicable Algebra in Engineering Communication and Computing, 8(2):85–101, February 1997. 17MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Volker Weispfenning. A new approach to quantifier elimination for real algebra. In B. F. Caviness and J. R. Johnson, editors, Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts and Monographs in Symbolic Computation, pages 376–392. Springer, Wien, New York, 1998. 18Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Andreas Dolzmann
    • 1
  1. 1.Facultä für Mathematik und InformatikUniversität PassauPassauGermany

Personalised recommendations