Advertisement

Behavioral Compatibility of Self-Typed Theories

  • Suad Alagić
  • Svetlana Kouznetsova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2374)

Abstract

The notion of self-typing is extended with the semantic constraints expressed as sentences. Specifying these behavioral properties is far beyond the expressiveness of type systems. The cornerstone of the approach is the view of classes as theories. The inheritance of class constraints is viewed as a theory morphism. The validity of the results across various possible logics for expressing class constraints is based on the object-oriented view of the notion of an institution. This view ties together the inheritance of class constraints and semantically correct object substitutability. The developed formal system is termed behavioral matching and it is proved to be an institution. Implications of this result are also analyzed.

Keywords

Class Signature Satisfaction Condition Class Constraint Method Signature Satisfaction Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M., Leino, K.R.M.: A Logic of Object-Oriented Programs. Proceedings of TAPSOFT’ 97. Lecture Notes in Computer Science 1214. Springer (1997) 682–696.CrossRefGoogle Scholar
  2. 2.
    Abadi, M., Cardelli, L.: On Subtyping and Matching. Proceedings of ECOOP’ 96. Lecture Notes in Computer Science 1098. Springer (1996) 145–167.Google Scholar
  3. 3.
    Alagić, S.: Institutions: Integrating Objects, XML and Databases. Information and Software Technology (2002) (to appear).Google Scholar
  4. 4.
    Alagić S., Bernstein, P.A.: A Model Theory for Generic Schema Management. Proceedings of DBPL’ 01 (Database Programming Languages), 107–118. Lecture Notes in Computer Science (2002) (to appear).Google Scholar
  5. 5.
    Alagić, S.: Semantics of Temporal Classes. Information and Computation 163 (2000) 60–102.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Alagić, S., Solorzano J., Gitchell, D.: Orthogonal to the Java Imperative. Proceedings of ECOOP’ 98. Lecture Notes in Computer Science 1445. Springer (1998) 212–233.Google Scholar
  7. 7.
    Alagić, S., Alagić, M.,: Order-Sorted Model Theory for Temporal Executable Specifications. Theoretical Computer Science 179 (1997) 273–299.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Alagić, S.: Constrained Matching is Type Safe. Proceedings of the Sixth Int. Workshop on Database Programming Languages. Lecture Notes in Computer Science 1369. Springer (1998) 78–96.CrossRefGoogle Scholar
  9. 9.
    Alagić, S.: Temporal Object-Oriented Programming. Object-Oriented Systems 6 (1999) 1–42. Computer Journal 43 (2001) 492–493.Google Scholar
  10. 10.
    Alagić, S., Sunderraman, R., Bagai, R. Declarative Object-Oriented Programming: Inheritance, Subtyping and Prototyping. Proceedings of ECOOP’ 94. Lecture Notes in Computer Science 821. Springer (1994) 236–259.Google Scholar
  11. 11.
    Alagić S., Sunderraman, R.: Expressibility of Typed Logic Paradigms for Object-Oriented Databases. Proceedings of BNCOD-12. Lecture Notes in Computer Science 826. Springer (1994) 73–89.Google Scholar
  12. 12.
    Bruce, K.: Safe Type Checking in a Statically Typed Object-Oriented Programming Language. Proceedings of the Conference on Functional Programming. ACM Press (1993) 285–298.Google Scholar
  13. 13.
    Bruce, K., Schuett, A., van Gent, R.: PolyTOIL: a Type-Safe Polymorphic Object-Oriented Language. Proceedings of ECOOP’ 95. Lecture Notes in Computer Science 952. Springer (1995) 27–51.Google Scholar
  14. 14.
    Bruce, K., Petersen, L., Feich, A.: Subtyping is not a Good Match for Object-Oriented Programming. Proceedings of ECOOP’ 96. Lecture Notes in Computer Science 1241. Springer (1996) 104–127.Google Scholar
  15. 15.
    Cook, W. R.: A Proposal for Making Eiffel Type Safe. The Computer Journal 32 (1989) 305–311.CrossRefGoogle Scholar
  16. 16.
    Cook, W. R., Hill, W. L., Canning, P.S.: Inheritance is not Subtyping. Proceedings of the Conference on Principles of Programming Languages. ACM Press (1990) 125–135.Google Scholar
  17. 17.
    Futatsugi, K. Goguen, J., Jouannaud, J., Meseguer, J.: Principles of OBJ2. In: Reid, B.K. (ed): Proceedings of POPL’ 85. ACM Press (1985) 52–66.Google Scholar
  18. 18.
    Goguen, J., Burstall, R.: Institutions: Abstract Model Theory for Specification and Programming. Journal of the ACM 39 (1992) 92–146.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Goguen, J.: Types as Theories. In: Reed, G.M., Roscoe A.W., Wachter R.F. (eds.): Topology and Category Theory in Computer Science. Clarendon Press (1991) 357–390.Google Scholar
  20. 20.
    Goguen, J., Meseguer, J.: Order-Sorted Algebra I: Equational Deduction for Multiple Inheritance, Overloading, Exceptions and Partial Operations. Theoretical Computer Science 105 (1992) 217–273.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Goguen, J., Meseguer, J.: EQLOG: Equality, Types, and Generic Modules for Logic Programming. In: Degroot, D., Lindstrom, G. (eds.): Logic Programming: Functions, Relations and Equations. Prentice Hall (1986) 295–363.Google Scholar
  22. 22.
    Goguen J., Meseguer, J.: Unifying Functional, Object-Oriented and Relational Programming with Logical Semantics. In: Shriver, B., Wegner, P. (eds.): Research Directions in Object-Oriented Programming. MIT Press (1987) 417–477.Google Scholar
  23. 23.
    Goguen J., Meseguer, J.: Models and Equality for Logical Programming. In: Ehrig, H., Levi, G., Kowalski, R., Montanari, U. (eds.): Proceedings of TAPSOFT’ 87. Lecture Notes in Computer Science 250. Springer (1987) 1–22.CrossRefGoogle Scholar
  24. 24.
    Goguen, J., Burstall, R.: A Study in the Foundations of Programming Methodology: Specifications, Institutions, Charters and Parchments. In: Pitt, D., Abram-sky, S., Poigne, A., Rydehard, D. (eds.): Proceedings of the Conference on Category Theory and Computer Programming. Lecture Notes in Computer Science 240. Springer (1986) 313–333.CrossRefGoogle Scholar
  25. 25.
    Goguen, J., Burstall, R.: Introducing Institutions. In: Clarke E., Kozen, D. (eds.): Proceedings of the Logics of Programming Workshop. Lecture Notes in Computer Science 164. Springer (1984) 221–256.Google Scholar
  26. 26.
    Jacobs, B. van den Berg, L., Husiman, M., van Berkum, M.: Reasoning About Java Classes. Proceedings of OOPSLA’ 98. ACM (1998) 329–340.Google Scholar
  27. 27.
    Kifer, M., Lausen, G., Wu, J.: Logical Foundation of Object-Oriented and Frame-Based Languages. Journal of the ACM, 42 (1993) 741–843.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Lamport, L.: Specifying Concurrent Program Modules. ACM Transactions on Programming Languages and Systems 5 (1983) 190–222.MATHCrossRefGoogle Scholar
  29. 29.
    Leavens, G.T., Weihl, W.E.: Reasoning About Object-Oriented Programs that Use Subtypes. Proceedings of OOPSLA/ECOOP’ 90. ACM (1990) 212–223.Google Scholar
  30. 30.
    Leavens, G.T.: Modular Specification and Verification of Object-Oriented Programs. IEE Software July (1991) 72–80.Google Scholar
  31. 31.
    Liskov B., Wing, J.M.: A Behavioral Notion of Subtyping. ACM Transactions on Programming Languages and Systems 16 (1994) 1811–1841.CrossRefGoogle Scholar
  32. 32.
    Mac Lane, S.: Categories for a Working Mathematician. Springer (1998).Google Scholar
  33. 33.
    Meyer, B.: Eiffel: The Language. Prentice Hall (1992).Google Scholar
  34. 34.
    Meyer, B.: Object-Oriented Software Construction. Prentice Hall (1997).Google Scholar
  35. 35.
    Meseguer, J.: Solving the Inheritance Anomaly in Concurrent Object-Oriented Programming. Proceedings of ECOOP’ 93. Lecture Notes in Computer Science 707. Springer (1993) 220–246.Google Scholar
  36. 36.
    Meseguer J., Qian, X.: A logical Semantics for Object-Oriented Databases. Proceedings of ACM SIGMOD Conference. ACM Press (1993) 89–98.Google Scholar
  37. 37.
    Poll, E.: A Coalgebraic Semantics of Subtyping. Electronic Notes in Theoretical Computer Science (2000).Google Scholar
  38. 38.
    Ruby, C., Leavens, G.: Creating Correct Subclasses Without Seeing Superclass Code. Proceedings of OOPSLA 2000. ACM (2000) pp. 208–228.Google Scholar
  39. 39.
    Stata, R., Guttag, J.V.: Modular Reasoning in the Presence of Subclassing. Proceedings of OOPSLA’ 95. ACM (1995) 200–214.Google Scholar
  40. 40.
    Spruit, P., Wieringa, R., Meyer, J-J.: Dynamic Database Logic: the First-Order Case. In: Modeling Database Dynamics, Fourth Int. Workshop on Foundations of Models and Languages for Data and Objects. Workshops in Computing. Springer (1993) 103–120.Google Scholar
  41. 41.
    Wieringa, R., de Jonge W., Spruit, P.: Roles and Dynamic Subclasses: A Modal Logic Approach. Proceedings of ECOOP’ 94. Lecture Notes in Computer Science 821. Springer (1994) 33–59.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Suad Alagić
    • 1
  • Svetlana Kouznetsova
    • 2
  1. 1.Department of Computer ScienceUniversity of Southern MainePortlandUSA
  2. 2.Department of Computer ScienceWichita State UniversityWichitaUSA

Personalised recommendations