Image Segmentation by Flexible Models Based on Robust Regularized Networks

  • Mariano Rivera
  • James Gee
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2352)

Abstract

The object of this paper is to present a formulation for the segmentation and restoration problem using flexible models with a robust regularized network (RRN). A two-steps iterative algorithm is presented. In the first step an approximation of the classification is computed by using a local minimization algorithm, and in the second step the parameters of the RRN are updated. The use of robust potentials is motivated by (a) classification errors that can result from the use of local minimizer algorithms in the implementation, and (b) the need to adapt the RN using local image gradient information to improve fidelity of the model to the data.

Keywords

Segmentation Restoration Edge-preserving Regularization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li, S.Z.: Markov Random Field Modeling in Image Analysis, Springer-Verlag, New York (2001)MATHGoogle Scholar
  2. 2.
    Kirkpatrick, S., Gellatt, C. D., Vecchi, M.P.: Optimization by simulated annealing, Science, 220 (1983) 671–680CrossRefMathSciNetGoogle Scholar
  3. 3.
    Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and Bayesian restoration of images, IEEE Trans. Pattern Anal. Machine Intell., 6 (1984) 721–741MATHGoogle Scholar
  4. 4.
    Besag, J.: On the statistics analysis of dirty pictures (with discussions), Journal of the Royal Statistical Society, Series B, 48 (1986) 259–302MATHMathSciNetGoogle Scholar
  5. 5.
    Peterson C., Soderberg, B. A new method for mapping optimization problems onto neural networks, International Journal of Neural Systems, 1 (1989) 3–22CrossRefGoogle Scholar
  6. 6.
    Geiger D., Girosi, F.: Parallel and deterministic algorithms for MRFs: Surface reconstruction and Integration, IEEE Trans. Pattern Anal. Machine Intell., 12 (1991) 401–412CrossRefGoogle Scholar
  7. 7.
    Zhang, J.: Mean field theory in EM procedures for MRFs,” IEEE Trans. Signal Processing, 40 (1992) 2570–2583MATHCrossRefGoogle Scholar
  8. 8.
    Heitz, F., Perez, P., Bouthermy, P.: Multiscale minimization of global energy functions in some visual recovery problems, Computer Vision, Graphics, and Image Processing: Image Understanding, 59 (1994) 125–136CrossRefGoogle Scholar
  9. 9.
    Faugeras, O., Price, K.: Semantic description of aerial images using stochastic labeling, IEEE Trans. Pattern Anal. Machine Intell., 3 (1981) 638–642Google Scholar
  10. 10.
    Hummel, R.A., Zucker, S.W.: On the foundations of relaxation labeling process, IEEE Trans. Pattern Anal. Machine Intell., 5 (1983) 267–286MATHCrossRefGoogle Scholar
  11. 11.
    Li, S.Z., MAP image restoration and segmentation by constrained optimization, IEEE Trans. Image Processing, 9 (1998) 1134–1138CrossRefGoogle Scholar
  12. 12.
    Marroquin, J.L., Velazco, F.A., Rivera, M., Nakamura, M.: Gauss-Markov Measure Field Models for low-level vision, IEEE Trans. Pattern Anal. Machine Intell., 23 (2001) 337–348CrossRefGoogle Scholar
  13. 13.
    Darrell, T.J., Pentland, A.P.: Cooperative robust estimation using layers of support, IEEE Trans. Pattern Anal. Machine Intell., 17 (1995) 474–487CrossRefGoogle Scholar
  14. 14.
    Black, M.J., Fleet D.J., Yacoob, Y.: Robustly estimating changes in image appearance, Comput. Vision Image Understand. 78 (2000) 8–31CrossRefGoogle Scholar
  15. 15.
    Marroquin, J.L., Botello, S., Calderon F., Vemuri, B.C.: MPM-MAP for image segmentation, In Procc. ICPR 2000, Barcelona Spain, 4 (2000) 300–310Google Scholar
  16. 16.
    Samson, C., Blanc-Feraud, L., Aubert, G., Zerubia, J.: A variational model for image classification and restoration, IEEE Trans. Pattern Anal. and Machine Intell., 22 (2000) 460–472CrossRefGoogle Scholar
  17. 17.
    Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks architectures, Neural Computing, 7 (1995) 219–269CrossRefGoogle Scholar
  18. 18.
    Rivera, M., Marroquin, J.L.: Efficient Half-Quadratic Regularization with Granularity Control, Technical Report: 05.06.2001, I-01-07 (CC), CIMAT, Mexico (2001)Google Scholar
  19. 19.
    Geman, S., McClure, D.E.: Bayesian image analysis methods: An application to single photon emission tomography, Proc. Statistical Computation Section, Amer. Statistical Assoc., Washington, DC, (1985) 12–18Google Scholar
  20. 20.
    Geman, D., Reynolds, G.: Constrained restoration and the recovery of discontinuities, IEEE Trans. Image Processing, 14 (1992) 367–383Google Scholar
  21. 21.
    Geman, D., Yang, C.: Nonlinear image recovery with half-quadratic regularization, IEEE Trans. Image Processing, 4 (1995) 932–946CrossRefGoogle Scholar
  22. 22.
    Black, M.J., Rangarajan, A.: Unification of line process, outlier rejection, and robust statistics with application in early vision,” Int. J. Comput. Vis., 19, (1996) 57–92CrossRefGoogle Scholar
  23. 23.
    Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, G.: Deterministic edge-preserving regularization in computer imaging, IEEE Trans. Image Processing, 6 (1997) 298–311CrossRefGoogle Scholar
  24. 24.
    Rivera, M., Marroquin, J.L.: The adaptive rest condition spring model: an edge preserving regularization techinque, in Proc.Interational Conference on Image Processing, IEEE-ICIP 2000, Vol. II, Vancouver, Canada (2000) 805–807Google Scholar
  25. 25.
    Rivera, M., Marroquin, J.L.: Adaptive Rest Condition Potentilas: Second Order Edge-Preserving Regularization, In Proc. European Conference on Computer Vision, ECCV 2002, Springer-Verlag, Copenhagen, Denmark, May (2002)Google Scholar
  26. 26.
    Girosi, F., Poggio, T., Caprile B., Extensions of a theory of networks for approximation of and learning: outliers and negative examples,” In R. Lippmann, J. Moody and D. Tourezky, editors, Advances in Neural information processing systems 3, San Mateo, CA, Cambridge University Press (1991)Google Scholar
  27. 27.
    Girosi, F., Jones, M., Poggio, T.: Priors, stabilizers and basis functions: from regularization to radial, tensor and additive splines, MIT AI Lab Memo, No. 1430, June (1993)Google Scholar
  28. 28.
    Weickert, J.: Efficient image segmentation using partial differentiable equations and morphology, Pattern Recognition, 34 (2001) 1813–1824MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Mariano Rivera
    • 1
    • 2
  • James Gee
    • 1
  1. 1.Department of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Centro de Investigacion en Matematicas A.C.GuanajuatoMexico

Personalised recommendations