Advertisement

All the Images of an Outdoor Scene

  • Srinivasa G. Narasimhan
  • Chi Wang
  • Shree K. Nayar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2352)

Abstract

The appearance of an outdoor scene depends on a variety of factors such as viewing geometry, scene structure and reflectance (BRDF or BTF), illumination (sun, moon, stars, street lamps), atmospheric condition (clear air, fog, rain) and weathering (or aging) of materials. Over time, these factors change, altering the way a scene appears. A large set of images is required to study the entire variability in scene appearance. In this paper, we present a database of high quality registered and calibrated images of a fixed outdoor scene captured every hour for over 5 months. The dataset covers a wide range of daylight and night illumination conditions, weather conditions and seasons. We describe in detail the image acquisition and sensor calibration procedures. The images are tagged with a variety of ground truth data such as weather and illumination conditions and actual scene depths. This database has potential implications for vision, graphics, image processing and atmospheric sciences and can be a testbed for many algorithms. We describe an example application - image analysis in bad weather - and show how this method can be evaluated using the images in the database. The database is available online at http://www.cs.columbia.edu/CAVE/. The data collection is ongoing and we plan to acquire images for one year.

Keywords

Ground Truth Data Outdoor Scene High Dynamic Range Image Scene Point Scene Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination and expression (PIE) database of faces. Tech Report CMU-RI-TR-01-02 (2001)Google Scholar
  2. 2.
    Phillips, P., Wechsler, H., Huang, J., Rauss, P.: The feret database and evaluation procedure for face-recognition algorithms. Image and Vision Computing 16 (1998)Google Scholar
  3. 3.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. PAMI 19 (1997) 711–720Google Scholar
  4. 4.
    Murase, H., Nayar, S., Nene, S.: Software library for appearance matching (slam). In: ARPA94. (1994) I:733–737Google Scholar
  5. 5.
    Funt, B., Barnard, K., Martin, L.: Is machine colour constancy good enough? In: Proc ECCV. (1998)Google Scholar
  6. 6.
    Dana, K., Nayar, S., van Ginneken, B., Koenderink, J.: Reflectance and texture of real-world surfaces. In: Proc CVPR. (1997) 151–157Google Scholar
  7. 7.
    van Hateren, J.H., van der Schaaf, A.: Independent component filters of natural images compared with simple cells in primary visual cortex. In Proc. Royal Society of London B 265 (1998) 359–366CrossRefGoogle Scholar
  8. 8.
    Parraga, C.A., Brelstaff, G.J., Troscianko, T., Moorhead, I.: Color and illumination information in natural scenes. JOSA A 15 (1998) 563–569CrossRefGoogle Scholar
  9. 9.
    Teller, S., Antone, M., Bodnar, Z., Bosse, M., Coorg, S., Jethwa, M., Master, N.: Calibrated registered images of an extended urban area. In: Proc. CVPR. (2001)Google Scholar
  10. 10.
    Hazecam: A live webcam. (In:http://www.hazecam.net)
  11. 11.
    CMUPage: The computer vision home page. (In: http://www.cs.cmu.edu/cil/vision.html)
  12. 12.
    Heikkila, J., Silven, O.: A four-step camera calibration procedure with implicit image correction. In: Proc. CVPR. (1997) 1106–1112Google Scholar
  13. 13.
    Bouguet, J.Y.: Camera calibration toolbox. (In: http://www.vision.caltech.edu/bouguetj/calib doc)
  14. 14.
    Mitsunaga, T., Nayar, S.: Radiometric self calibration. In: CVPR. (1999) I:374–380Google Scholar
  15. 15.
    Nayar, S., Mitsunaga, T.: High dynamic range imaging: Spatially varying pixel exposures. In: Proc. CVPR. (2000) I:472–479Google Scholar
  16. 16.
    USGS: U.S. Geological Survey Mapping home page. (In: http://mapping.usgs.gov)
  17. 17.
    ESRI: The ESRI home page. (In: http://www.esri.com)
  18. 18.
    NWS: The national weather service home page. (In: http://www.nws.noaa.gov)
  19. 19.
    Aurora: Sun angle basics. (In: http://aurora.crest.org/basics/solar/angle/)
  20. 20.
    Naval-Observatory: The Astronomical Alamanac for the Year 2001. US R. G. O Government Printing Office (2001)Google Scholar
  21. 21.
    Acharya, P.K., Berk, A., Anderson, G.P., Larsen, N.F., Tsay, S.C., Stamnes, K.H.: Modtran4: Multiple scattering and BRDF upgrades to modtran. SPIE Proc. Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III 3756 (1999)Google Scholar
  22. 22.
    Land, E., McCann, J.: Lightness and retinex theory. JOSA 61 (1971)Google Scholar
  23. 23.
    Ramachandran, V.: Perceiving shape from shading. SciAmer 259 (1988) 76–83Google Scholar
  24. 24.
    Henderson, S.T.: Daylight and its Spectrum. New York: Wiley (1977)Google Scholar
  25. 25.
    Slater, D., Healey, G.: What is the spectral dimensionality of illumination functions in outdoor scenes? In: Proc. CVPR. (1998) 105–110Google Scholar
  26. 26.
    Moon, P., Spencer, D.: Illumination from a non-uniform sky. Illum Engg 37 (1942)Google Scholar
  27. 27.
    Gordon, J., Church, P.: Overcast sky luminances and directional luminous reflectances of objects and backgrounds under overcast skies. App. Optics 5 (1966)Google Scholar
  28. 28.
    Tadamura, K., Nakamae, E., Kaneda, K., Baba, M., Yamashita, H., Nishita, T.: Modeling of skylight and rendering of outdoor scenes. In: Eurographics. (1993)Google Scholar
  29. 29.
    Jensen, H.W., Durand, F., Stark, M.M., Premoze, S., Dorsey, J., Shirley, P.: A physically-based night sky model. In Proc. SIGGRAPH (2001)Google Scholar
  30. 30.
    Kender, J., Smith, E.: Shape from darkness. In: Proc. ICCV. (1987) 539–546Google Scholar
  31. 31.
    Kriegman, D., Belhumeur, P.: What shadows reveal about object structure. JOSA-A 18 (2001) 1804–1813CrossRefGoogle Scholar
  32. 32.
    Koschmieder, H.: Theorie der horizontalen sichtweite. Beitr. Phys. freien Atm., 12 (1924) 33–53,171–181Google Scholar
  33. 33.
    Nayar, S., Ikeuchi, K., Kanade, T.: Shape from interreflections. IJCV 6 (1991)Google Scholar
  34. 34.
    Hulst, V.D.: Light Scattering by small Particles. John Wiley and Sons (1957)Google Scholar
  35. 35.
    Nayar, S., Narasimhan, S.: Vision in bad weather. In Proc. ICCV (1999)Google Scholar
  36. 36.
    Narasimhan, S., Nayar, S.: Chromatic framework for vision in bad weather. In Proc. CVPR (2000)Google Scholar
  37. 37.
    Schechner, Y., Narasimhan, S., Nayar, S.: Instant dehazing of images using polarization. In Proc. CVPR (2001)Google Scholar
  38. 38.
    Oakley, J., Satherley, B.: Improving image quality in poor visibility conditions using a physical model for degradation. IEEE Trans. on Image Processing 7 (1998)Google Scholar
  39. 39.
    Yitzhaky, Y., Dror, I., Kopeika, N.: Restoration of altmospherically blurred images according to weather-predicted atmospheric modulation transfer function. Optical Engineering 36 (1998)Google Scholar
  40. 40.
    T. Nishita, Y. Dobashi, E.N.: Display of clouds taking into account multiple anisotropic scattering and sky light. SIGGRAPH (1996)Google Scholar
  41. 41.
    McCartney, E.: Optics of the Atmosphere: Scattering by molecules and particles. John Wiley and Sons (1975)Google Scholar
  42. 42.
  43. 43.
    Dorsey, J., Hanrahan, P.: Digital materials and virtual weathering. Scientific American 282 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Srinivasa G. Narasimhan
    • 1
  • Chi Wang
    • 1
  • Shree K. Nayar
    • 1
  1. 1.Columbia UniversityUSA

Personalised recommendations