Advertisement

Regularized Shock Filters and Complex Diffusion

  • Guy Gilboa
  • Nir A. Sochen
  • Yehoshua Y. Zeevi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2350)

Abstract

We address the issue of regularizing Osher and Rudin’s shock filter, used for image deblurring, in order to allow processes that are more robust against noise. Previous solutions to the problem suggested adding some sort of diffusion term to the shock equation. We analyze and prove some properties of coupled shock and diffusion processes. Finally we propose an original solution of adding a complex diffusion term to the shock equation. This new term is used to smooth out noise and indicate inflection points simultaneously. The imaginary value, which is an approximated smoothed second derivative scaled by time, is used to control the process. This results in a robust deblurring process that performs well also on noisy signals.

Keywords

Shock filters deblurring denoising image enhancement complex diffusion image features 

References

  1. 1.
    L. Alvarez, L. Mazorra, “Signal and image restoration using shock filters and anisotropic diffusion”, SIAM J. Numer. Anal. Vol. 31, No. 2, pp. 590–605, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    F. Barbaresco, “Calcul des variations et analyse spectrale: equations de Fourier et de Burgers pour modeles autoregressifs regularises“, Traitement du Signal, vol. 17, No. 5/6, 2000.Google Scholar
  3. 3.
    O. Coulon, S.R. Arridge, “Dual echo MR image processing using multi-spectral probabilistic diffusion coupled with shock filters”, MIUA’2000, British Conference on Medical Image Understanding and Analysis, London, United-Kingdom, 2000.Google Scholar
  4. 4.
    G. Gilboa, Y.Y. Zeevi, N. Sochen, “Complex diffusion processes for image filtering”, Michael Kerckhove (Ed.): Scale-Space 2001, LNCS 2106, pp. 299–307, Springer-Verlag 2001.Google Scholar
  5. 5.
    G. Gilboa, N. Sochen, Y.Y. Zeevi, “Image enhancement segmentation and de-noising by time dependent nonlinear diffusion processes”, ICIP-’01, Thessaloniki, Greece, October 2001.Google Scholar
  6. 6.
    G. Gilboa, N. Sochen, Y.Y. Zeevi, “Anisotropic selective inverse diffusion for signal enhancement in the presence of noise”, Proc. IEEE ICASSP-2000, Istanbul, Turkey, vol. I, pp. 211–224, June 2000.Google Scholar
  7. 7.
    G. Gilboa, N. Sochen, Y.Y. Zeevi, “Complex diffusion for image filtering”, CCIT Technical Report, Technion-IIT, Haifa, Israel-to appear.Google Scholar
  8. 8.
    F. Guichard, J-M. Morel, “A note on two classical shock filters and their asymptotics”, M. Kerckhove (Ed.): Scale-Space 2001, LNCS 2106, pp. 75–84, Springer-Verlag 2001.Google Scholar
  9. 9.
    M. Kerckhove (Ed.), “Scale-Space and morphology in computer-vision”, Scale-Space 2001, LNCS 2106, Springer-Verlag 2001.Google Scholar
  10. 10.
    P. Kornprobst, R. Deriche, G. Aubert, “Image coupling, restoration and enhancement via PDE’s”, Proc. Int. Conf. on Image Processing 1997, pp. 458–461, Santa-Barbara (USA), 1997.CrossRefGoogle Scholar
  11. 11.
    S.J. Osher and L. I. Rudin, “Feature-oriented image enhancement using shock filters”, SIAM J. Numer. Anal. 27, pp. 919–940, 1990.zbMATHCrossRefGoogle Scholar
  12. 12.
    N. Rougon, F. Preteux, “Controlled anisotropic diffusion”, Proc. SPIE Conf. on Nonlinear Image Processing VI-IS&T / SPIE Symp. on Electronic Imaging, Science and Technology’ 95, San Jose, CA, Vol. 2424, 1995, pp. 329–340.Google Scholar
  13. 13.
    P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion”, IEEE Trans. PAMI, vol. PAMI-12,no. 7, pp. 629–639, 1990.Google Scholar
  14. 14.
    B M ter Haar Romeny Ed., “Geometry driven diffusion in computer vision”, Kluwer Academic Publishers, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Guy Gilboa
    • 1
  • Nir A. Sochen
    • 2
  • Yehoshua Y. Zeevi
    • 1
  1. 1.Department of Electrical EngineeringTechnion - Israel Institute of TechnologyTechnion City, HaifaIsrael
  2. 2.Department of Applied MathematicsUniversity of Tel-AvivTel-AvivIsrael

Personalised recommendations