Resolution Selection Using Generalized Entropies of Multiresolution Histograms

  • Efstathios Hadjidemetriou
  • Michael D. Grossberg
  • Shree K. Nayar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2350)


The performances of many image analysis tasks depend on the image resolution at which they are applied. Traditionally, resolution selection methods rely on spatial derivatives of image intensities. Differential measurements, however, are sensitive to noise and are local. They cannot characterize patterns, such as textures, which are defined over extensive image regions. In this work, we present a novel tool for resolution selection that considers sufficiently large image regions and is robust to noise. It is based on the generalized entropies of the histograms of an image at multiple resolutions. We first examine, in general, the variation of histogram entropies with image resolution. Then, we examine the sensitivity of this variation for shapes and textures in an image. Finally, we discuss the significance of resolutions of maximum histogram entropy. It is shown that computing features at these resolutions increases the discriminability between images. It is also shown that maximum histogram entropy values can be used to improve optical flow estimates for block based algorithms in image sequences with a changing zoom factor.


Block Size Maximum Entropy Generalize Entropy Shannon Entropy Resolution Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Koenderink, J.: The structure of images. Biological Cybernetics 50 (1984) 363–370zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Witkin, A.: Scale-space filtering. In: Proc. of IJCAI. (1983) 1019–1022Google Scholar
  3. 3.
    Tsallis, C.: Nonextensive statistics: Theoretical, experimental and computational evidences and connections. Brazilian Journal of Physics 29 (1999)Google Scholar
  4. 4.
    Marr, D., Hildreth, E.: Theory of edge detection. Proc. Royal society of London B 207 (1980) 187–217CrossRefGoogle Scholar
  5. 5.
    Korn, A.: Toward a symbolic representation of intensity changes in images. IEEE Trans. on PAMI 10 (1988) 610–625Google Scholar
  6. 6.
    Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. IJCV 30 (1998) 117–154CrossRefGoogle Scholar
  7. 7.
    Elder, J., Zucker, S.: Local scale control for edge detection and blur estimation. IEEE Trans. on PAMI 20 (1998) 699–716Google Scholar
  8. 8.
    Marimont, D., Rubner, Y.: A probabilistic framework for edge detection and scale selection. In: Proc. of ICCV. Volume 1. (1998) 207–214Google Scholar
  9. 9.
    Jeong, H., Kim, C.: Adaptive discrimination of filter scales for edge detection. IEEE Trans. of PAMI 14 (1992) 579–585Google Scholar
  10. 10.
    Bretzner, L., Lindberg, T.: Feature tracking with automatic selection of spatial scales. CVIU 71 (1998) 385–392Google Scholar
  11. 11.
    Almansa, A., Lindberg, T.: Fingerprint enhancement by shape adaptation of scale-space operators with automatic scale selection. IEEE Trans. on IP 9 (2000) 2027–2042zbMATHGoogle Scholar
  12. 12.
    Wiltschi, K., Lindberg, T., Pinz, A.: Classification of carbide distributions using scale selection and directional distributions. In: Proc. of ICIP. Volume 3. (1997) 122–125CrossRefGoogle Scholar
  13. 13.
    Chomat, O., Verdiere, V., Hall, D., Crowley, J.: Local scale selection for Gaussian based description techniques. In: Proc. ECCV. Volume 1., Dublin (2000) 117–133Google Scholar
  14. 14.
    Crowley, J., A.C. Parker: A representation for shape based on peaks and ridges in the difference of low-pass transform. IEEE Trans. on PAMI 6 (1984) 156–170Google Scholar
  15. 15.
    Jagersand, M.: Saliency maps and attention selection in scale and spatial coordinates: An information theoretic approach. In: Proc. of ICCV. (1995) 195–202Google Scholar
  16. 16.
    Oomes, A., Snoeren, P.: Structural information in scale-space. In: Proc. of Workshop on Gaussian Scale-space Theory. Volume 96/19., Copenhagen, DIKU (1996) 48–57Google Scholar
  17. 17.
    Sporring, J., Weickert, J.: Information measures in scale-spaces. IEEE Trans. on IT 45 (1999) 1051–1058zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Barron, A.: Entropy and the central limit theorem. The Annals of probability 14 (1986) 336–342zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Carlen, E., Soffet, A.: Entropy production by block variable summation and central limit theorems. Communications in Mathematical Physics 140 (1991) 339–371zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Plastino, A., Plastino, A., Miller, H.: Tsallis nonextensive thermostatistics and Fisher’s information measure. Physica A 235 (1997) 577–588CrossRefMathSciNetGoogle Scholar
  21. 21.
    Blackman, N.: The convolution inequality for entropy powers. IEEE Trans. on IT 11 (1965) 267–271CrossRefGoogle Scholar
  22. 22.
    Stam, A.: Some inequalities satisfied by the quantities of information of Fisher and Shannon. Information and Control 2 (1959) 101–112CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Thum, C.: Measurement of the entropy of an image with application to image focusing. Optica Acta 31 (1984) 203–211Google Scholar
  24. 24.
    Kadir, T., Brady, M.: Saliency, scale and image description. IJCV 45 (2001) 83–105zbMATHCrossRefGoogle Scholar
  25. 25.
    Koenderink, J., Doorn, A.: The structure of locally orderless images. IJCV 31 (1999) 159–168CrossRefGoogle Scholar
  26. 26.
    Sporring, J., Colios, C., Trahanias, P.: Generalized scale-space. In: Proc. of ICIP. Volume 1. (2000) 920–923Google Scholar
  27. 27.
    Wong, A., Vogel, M.: Resolution-dependent information measures for image analysis. IEEE Trans. on Systems Man and Cybernetics SMC-7 (1977) 49–61MathSciNetCrossRefGoogle Scholar
  28. 28.
    Roldan, R., Molina, J., Aroza, J.: Multiresolution-information analysis for images. Signal Processing 24 (1991) 77–91zbMATHCrossRefGoogle Scholar
  29. 29.
    Tanaka, M., Watanabe, T., Mishima, T.: Tsallis entropy in scale-spaces. In: Proc. of the SPIE Conference on Vision Geometry VIII. Volume 3811. (1999) 273–281Google Scholar
  30. 30.
    Hadjidemetriou, E., Grossberg, M., Nayar, S.: Spatial information in multiresolution histograms. In: Proc. of CVPR. Volume 1. (2001) 702–709Google Scholar
  31. 31.
    Hadjidemetriou, E., Grossberg, M., Nayar, S.: Histogram preserving image transformations. In: Proc. of CVPR. (2000) I:410–416Google Scholar
  32. 32.
    Robotics Institute of CMU: (1998) CIL image database.Google Scholar
  33. 33.
    Haralick, R.: Statistical and structural approaches to texture. Proceedings of the IEEE 67 (1979) 786–804CrossRefGoogle Scholar
  34. 34.
    Mao, J., Jain, A.: Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recognition 25 (1992) 173–188CrossRefGoogle Scholar
  35. 35.
    Fugunaka, K.: Introduction to Statistical Pattern Recognition. Academic Press, New York (1990)Google Scholar
  36. 36.
    Michigan State University: (2000) FVC database.Google Scholar
  37. 37.
    Dana, K., Nayar, S., van Ginneken, B., Koenderink, J.: Reflectance and texture of real-world surfaces. In: Proc. of CVPR. (1997) 151–157Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Efstathios Hadjidemetriou
    • 1
  • Michael D. Grossberg
    • 1
  • Shree K. Nayar
    • 1
  1. 1.Computer ScienceColumbia UniversityUSA

Personalised recommendations