Image Processing Done Right

  • Jan J. Koenderink
  • Andrea J. van Doorn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2350)


A large part of “image processing” involves the computation of significant points, curves and areas (“features”). These can be defined as loci where absolute differential invariants of the image assume fiducial values, taking spatial scale and intensity (in a generic sense) scale into account. “Differential invariance” implies a group of “similarities” or “congruences”. These “motions” define the geometrical structure of image space. Classical Euclidian invariants don’t apply to images because image space is non-Euclidian. We analyze image structure from first principles and construct the fundamental group of image space motions. Image space is a Cayley-Klein geometry with one isotropic dimension. The analysis leads to a principled definition of “features” and the operators that define them.


Image features texture image indexing scale-space image transformations image space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, A.: The Print: Contact Printing and Enlarging. Basic Photo 3. Morgan and Lester, New York, 1950Google Scholar
  2. 2.
    Cayley, A.: Sixth Memoir upon Quantics. Phil.Trans.Roy.Soc.Lond. 149 (1859) 61–70CrossRefGoogle Scholar
  3. 3.
    Clifford, W. K.: Preliminary sketch of biquaternions. Proc.Lond.Math.Soc. (1873) 381–395Google Scholar
  4. 4.
    Florack, L.: Image Structure. Kluwer, Dordrecht, 1997Google Scholar
  5. 5.
    Gauss, C. F.: Algemeine Flächentheorie. (German translation of Disquisitiones generales circa Superficies Curvas), Hrsg. A. Wangerin, Ostwalds Klassiker der exakten Wissenschaften 5. Engelmann, Leipzig, 1889 (orig. 1827)Google Scholar
  6. 6.
    Ginneken, B. van, Haar Romeny, B. M. ter: Applications of locally orderless Images. In: Scale-Space Theories in Computer Vision. Eds. M. Nielsen, P. Johansen, O. F. Olsen and J. Weickert. Second Int.Conf. Scale-Space’99, Lect.Notes in Computer Science 1682. Springer, Berlin (1999) 10–21CrossRefGoogle Scholar
  7. 7.
    Jaglom, I. M.: A simple non-Euclidian geometry and its physical basis: an elementary account of Galilean geometry and the Galilean principle of relativity. Transl. A. Shenitzer, ed.ass. B. Gordon. Springer, New York, 1979Google Scholar
  8. 8.
    Jaglom, I. M.: Complex numbers in geometry. Transl. E. J. F. Primrose. Academic Paperbacks, New York, 1968Google Scholar
  9. 9.
    Jaynes, E. T.: Prior Probabilities. IEEE Trans. on Systems Science and Cybernetics 4(3) (1968) 227–241CrossRefGoogle Scholar
  10. 10.
    Klein, F.: Über die sogenannte nichteuklidische Geometrie. Mathematische Annalen Bd.6 (1871) 112–145CrossRefGoogle Scholar
  11. 11.
    Klein, F.: Vergleichende Betrachtungen über neue geometrische Forschungen (the “Erlangen Program”). Programm zu Entritt in die philosophische Fakultät und den Senat der Universität zu Erlangen. Deichert, Erlangen, 1872Google Scholar
  12. 12.
    Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Dordrecht, 1994Google Scholar
  13. 13.
    Pottmann, H., Opitz, K.: Curvature analysis and visualization for functions defined on Euclidian spaces or surfaces. Computer Aided Geometric Design 11 (1994) 655–674zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Sachs, H.: Ebene Isotrope Geometrie. Vieweg, Braunschweig/Wiesbaden, 1987zbMATHGoogle Scholar
  15. 15.
    Sachs, H.: Isotrope Geometrie des Raumes. Vieweg, Braunschweig/Wiesbaden, 1990zbMATHGoogle Scholar
  16. 16.
    Scheffer, G.: Verallgemeinerung der Grundlagen der gewöhnlichen komplexen Funktionen. Sitz.ber. Sächs.Ges.Wiss., Math.-phys.Klasse, Bnd. 45 (1893) 828–842Google Scholar
  17. 17.
    Strubecker, K.: Differentialgeometrie des isotropen Raumes I. Sitzungsberichte der Akademie der Wissenschaften Wien 150 (1941) 1–43MathSciNetGoogle Scholar
  18. 18.
    Strubecker, K.: Differentialgeometrie des isotropen Raumes II. Math.Z. 47 (1942) 743–777zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Strubecker, K.: Differentialgeometrie des isotropen Raumes III. Math.Z. 48 (1943) 369–427CrossRefMathSciNetGoogle Scholar
  20. 20.
    Strubecker, K.: Differentialgeometrie des isotropen Raumes IV. Math.Z. 50 (1945) 1–92CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Jan J. Koenderink
    • 1
  • Andrea J. van Doorn
    • 1
  1. 1.Buys Ballot LaboratoryUniversiteit UtrechtUtrechtThe Netherlands

Personalised recommendations