Ephemeral and Persistent Personalization in Adaptive Information Access to Scholarly Publications on the Web

  • Stefano Mizzaro
  • Carlo Tasso
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2347)


We show how personalization techniques can be exploited to implement more adaptive and effective information access systems in electronic publishing. We distinguish persistent (or long term) and ephemeral (or short term) personalization, and we describe how both of them can be profitably applied in information filtering and retrieval systems used, via a specialized Web portal, by physicists in their daily job. By means of several experimental results, we demonstrate that persistent personalization is needed and useful for information filtering systems, and ephemeral personalization leads to more effective and usable information retrieval systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.A. Asnicar, M. Di Fant, C. Tasso, User Model-Based Information Filtering, in M. Lenzerini ed. AI*IA 97: Advances in Artificial Intelligence — Proc. of the 5th Congress of AI*IA, LNAI 1321, Springer, Berlin, D, 1997, 242–253.CrossRefGoogle Scholar
  2. 2.
    R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval, Addison-Wesley, New York, NY, USA, 1999.Google Scholar
  3. 3.
    C.W. Bailey, Jr., Scholarly electronic publishing bibliography-Version 40: 12/12/01, http://info.lib.uh.edu/sepb/sepb.html, visited 5/1/02.
  4. 4.
    N.J. Belkin, Helping People Find What They Don’t Know, Comm. of the ACM 43(8), 2000, 59–61.CrossRefGoogle Scholar
  5. 5.
    N. Belkin, C. Cool, D. Kelly, S.-J. Lin, S.Y. Park, J. Perez-Carballo, C. Sikora, Iterative exploration, design and evaluation of support for query reformulation in interactive information retrieval, Information Processing and Management 37(3), 2001, 403–434.MATHCrossRefGoogle Scholar
  6. 6.
    N. Belkin, C. Cool, A. Stein, U. Thiel, Cases, scripts, and information-seeking strategies: On the design of interactive information retrieval systems, Expert Systems with Applications 9(3), 1995, 379–395.CrossRefGoogle Scholar
  7. 7.
    D. Billsus, M.J. Pazzani, User Modeling for Adaptive News Access, User Modeling and User-Adapted Interaction Journal 10(2-3), 2000, 147–180.CrossRefGoogle Scholar
  8. 8.
    G. Brajnik, S. Mizzaro, C. Tasso, Evaluating User Interfaces to Information Retrieval Systems: a Case Study on User Support, Proc. of the 19th Annual International ACM SIGIR Conference, Zurich, CH, 1996, 128–136.Google Scholar
  9. 9.
    G. Brajnik, S. Mizzaro, C. Tasso, F. Venuti. Strategic help in user interfaces for information retrieval, J. of the Am. Soc. for Information Science and Technology, 2002, in press.Google Scholar
  10. 10.
    G. Brajnik, C. Tasso, A shell for developing non-monotonic user modeling systems, International Journal Human-Computer Studies 40, 1994, 31–62.CrossRefGoogle Scholar
  11. 11.
    C. Brown, The E-volution of Preprints in the Scholarly Communication of Physicists and Astronomers, J. of the Am. Soc. for Information Science and Technology 52(3), 2001, 187–200.CrossRefGoogle Scholar
  12. 12.
    W.B. Croft, S. Cronen-Townsend, V. Lavrenko, Relevance Feedback and Personalization: A Language Modeling Perspective, DELOS Workshop: Personalisation and Recommender Systems in Digital Libraries, 2001, www.ercim.org/publication/ws-proceedings/DelNoe02/.
  13. 13.
    E.N. Efthimiadis, Query expansion, Annual Review of Information Science and Technology (ARIST), M. E. Williams ed., vol. 31, 1996, 121–187.Google Scholar
  14. 14.
    U. Hanani, B. Shapira, P. Shoval, Information Filtering: Overview of Issues, Research and Systems, User Modeling and User-Adapted Interaction 11(3), 2001, 203–259.MATHCrossRefGoogle Scholar
  15. 15.
    S.P. Harter, Scholarly communication and electronic journals: An impact study. J. of the Am. Soc. for Information Science 1998, 49(6), 507–516.CrossRefGoogle Scholar
  16. 16.
    P. Ingwersen, Information Retrieval Interaction, Taylor Graham, London, UK, 1992.Google Scholar
  17. 17.
    A. Jameson, C. Paris, C. Tasso eds., User Modeling — Proc. of the 6th Intl. Conference UM97, Springer-Verlag, Wien New York, 1997.Google Scholar
  18. 18.
    T. Malone, K. Grant, F. Turbak, S. Brobst, M. Cohen, Intelligent information sharing systems, Comm. of the ACM 43(8), 1987, 390–402.CrossRefGoogle Scholar
  19. 19.
    R. Mandala, T. Tokunaga, H. Tanaka, Query expansion using heterogeneous thesauri, Information Processing & Management 36, 2000, 361–378.CrossRefGoogle Scholar
  20. 20.
    M. Minio, C. Tasso, User Modeling for Information Filtering on Internet Services: Exploiting an Extended Version of the UMT Shell, UM96 Workshop on User Modeling for Information Filtering on the World Wide WEB, Kailua-Kona, Hawaii, USA, January 1996.Google Scholar
  21. 21.
    S. Mizzaro & P. Zandegiacomo Rizió. An automatically refereed scholarly electronic journal: Formal specifications. Informatica-An International Journal of Computing and Informatics 24(4), 2000, 431–438.MathSciNetMATHGoogle Scholar
  22. 22.
    C. Tasso, M. Armellini, Exploiting User Modeling Techniques in Integrated Information Services: The TECHFINDER System, in E. Lamma and P. Mello eds., Proc. of the 6th Congress of the Italian Association for Artificial Intelligence, Pitagora Editrice, Bologna, I, 1999, 519–522.Google Scholar
  23. 23.
    C. Tasso, P. Omero, La personalizzazione dei contenuti Web: e-commerce, i-access, e-government, Franco Angeli, Milano, I, 2002.Google Scholar
  24. 24.
    Y. Y. Yao, Measuring retrieval effectiveness based on user preference of documents, J. of the Am. Soc. for Information Science 46(2), 1995, 133–145.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Stefano Mizzaro
    • 1
  • Carlo Tasso
    • 1
  1. 1.Artificial Intelligence Laboratory Department of Mathematics and Computer ScienceUniversity of UdineItaly

Personalised recommendations