Detection of Frontal Faces in Video Streams

  • M. Castrillón Santana
  • J. Lorenzo Navarro
  • J. Cabrera Gámez
  • F. M. Hernández Tejera
  • J. Méndez Rodríguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2359)

Abstract

This paper describes an approach for detection of frontal faces in real time (20–35Hz) for further processing. This approach makes use of a combination of previous detection tracking and color for selecting interest areas. On those areas, later facial features such as eyes, nose and mouth are searched based on geometric tests, appearance verification, temporal and spatial coherence. The system makes use of very simple techniques applied in a cascade approach, combined and coordinated with temporal information for improving performance. This module is a component of a complete system designed for detection, tracking and identification of individuals [1].

Keywords

Face detection tracking active vision feature detection HCI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    O. Déniz, M. Castrillón, J. Lorenzo, and M. Hernández. An incremental learning algorithm for face recognition. In Post-ECCV Workshop on Biometric Authentication, 2002. Copenhagen, Denmark.Google Scholar
  2. [2]
    Alex Pentland. Looking at people: Sensing for ubiquitous and wearable computing. IEEE Trans. on Pattern Analysis and Machine Intelligence, January 2000.Google Scholar
  3. [3]
    Bernt Schiele, Tony Jebara, and Nuria Oliver. Sensory augmented computing: Wearing the museum’s guide. IEEE Micro, May/June 2001.Google Scholar
  4. [4]
    Sebastian Thrun, Mareb Bennewitz, Wolfram Burgard, Armin B. Cremers, Frank Dellaert, Dieter Fox, Dirk Hähnel, Charles Rosenberg, Nicholas Roy, Jamieson Schulte, and Dirk Schulz. Minerva: A second-generation museum tour-guide robot. Technical report, Carnegie Mellon University, 1998.Google Scholar
  5. [5]
    E. Hjelmas and B. K. Low. Face detection: A survey. Computer Vision and Image Understanding, 83(3), 2001. Erik Hjelmas and Boon Kee Low.Google Scholar
  6. [6]
    Paul Ekman and Erika Rosenberg. What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (Facs). Series in Affective Science. Oxford University Press, 1998.Google Scholar
  7. [7]
    Ming-Hsuan Yang, David Kriegman, and Narendra Ahuja. Detecting faces in images: A survey. Transactions on Pattern Analysis and Machine Intelligence, 24(1):34–58, 2002.CrossRefGoogle Scholar
  8. [8]
    Henry A. Rowley. Neural Network-Based Face Detection. PhD thesis, Carnegie Mellon University, May 1999.Google Scholar
  9. [9]
    Moritz Störring, Hans J. Andersen, and Erik Granum. Skin colour detection under changing lighting conditions. In 7th Symposium on Intelligent Robotics Systems, July 1999.Google Scholar
  10. [10]
    J. Lorenzo, M. Hernández, and J. Méndez. Gd: A measure based on information theory for attribute selection. Lectures Notes in Artificial Intelligence, 1484:124–135, 1998.Google Scholar
  11. [11]
    Christopher Wren, Ali Azarrbayejani, Trevor Darrell, and Alex Pentland. Pfinder: Real-time tracking of the human body. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19(7), July 1997.Google Scholar
  12. [12]
    Haiyuan Wu, Qian Chen, and Masahiko Yachida. Face detection from color images using a fuzzy pattern matching method. IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(6), June 1999.Google Scholar
  13. [13]
    R. Brunelli and T. Poggio. Face recognition: Features versus templates. IEEE Trans. on Pattern Analysis and Machine Intelligence, 15(10):1042–1052, 1993.CrossRefGoogle Scholar
  14. [14]
    Karin Sobottka and Ioannis Pitas. A novel method for automatic face segmentation, face feature extraction and tracking. Signal Processing: Image Communication, 12(3), 1998.Google Scholar
  15. [15]
    C. Wong, D. Kortenkamp, and M. Speich. A mobile robot that recognizes people. IEEE International Conference on Tools and Artificial intelligence, 1995.Google Scholar
  16. [16]
    Andreas Lanitis, Chris Taylor, and Timothy F. Cootes. Automatic interpretation and coding of face image using flexible models. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19(7), July 1997.Google Scholar
  17. [17]
    Alex Pentland, Baback Moghaddam, and Thad Starner. View based and modular eigenspaces for face recognition. Proc. IEEE Conference on CVPR’94, 1994.Google Scholar
  18. [18]
    Daniel Reisfeld and Yehezkel Yeshurun. Preprocessing of face images: Detection of features and pose normalization. Computer Vision and Image Understanding, 71(3), September 1998.Google Scholar
  19. [19]
    M. Tistarelli and E. Grosso. Active vision-based face authentication. Image and Vision Computing, 18, 2000.Google Scholar
  20. [20]
    F. Smeraldi, O. Carmona, and J. Bigün. Saccadic search with gabor features applied to eye detection and real-time head tracking. Image and Vision Computing, 18, 2000.Google Scholar
  21. [21]
    Jeffrey Huang, David Ii, Xuhui Shao, and Harry Wechsler. Pose discrimination and eye detection using support vector machines. In Proc. NATO-ASI on Face Recognition: From Theory to Applications, 1998.Google Scholar
  22. [22]
    M. Hernández, J. Cabrera, M. Castrillón, A.C Domínguez, C. Guerra, D. Hernández, and J. Isern. Deseo: An active vision system for detection, tracking and recognition. Lecture Notes on Computer Science, 1542, 1999. Springer-Verlag, ICVS’99, Gran Canaria.Google Scholar
  23. [23]
    Erik Hjelmas and Ivar Farup. Experimental comparison of face/non-face classifiers. In Procs. of the Third International Conference on Audio-and Video-Based Person Authentication. Lecture Notes in Computer Science 2091, 2001.Google Scholar
  24. [24]
    M. Castrillón Santana. Face sequences dataset, http://kassandra.techfak/uni-bielefeld.de/euron, 2000.
  25. [25]
    M. Soriano, B. Martinkauppi, S. Huovinen, and M. Laaksonen. Using the skin locus to cope with changing illumination conditions in color-based face tracking. In Proc. Nordic Signal Processing Symposium (NORSIG2000), pages 383–386, June 13–15 2000. Kolmården, Sweden.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • M. Castrillón Santana
    • 1
  • J. Lorenzo Navarro
    • 1
  • J. Cabrera Gámez
    • 1
  • F. M. Hernández Tejera
    • 1
  • J. Méndez Rodríguez
    • 1
  1. 1.Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (IUSIANI)Universidad de Las Palmas de Gran Canaria - Edificio Central del Parque Científico TecnológicoLAS PALMASSpain

Personalised recommendations