Contextualization as an Abstraction Mechanism for Conceptual Modelling

  • Manos Theodorakis
  • Anastasia Analyti
  • Panos Constantopoulos
  • Nicolas Spyratos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1728)


The notion of context appears in several disciplines, including computer science, under various forms. In this paper, we are concerned with a notion of context in the area of conceptual modeling. First, we present a simple definition whereby a context is seen as a set of objects, within which each object has a set of names and possibly a reference: the reference of the object is another context which “hides” detailed information about the object. Then, we enhance our simple notion of context by structuring its contents through the traditional abstraction mechanisms, i.e. classification, generalization, and attribution.We show that, depending on the application, our notion of context can be used either as an alternative way of modeling or as a complement of the traditional abstraction mechanisms. Finally, we study the interactions between contextualization and the traditional abstraction mechanisms as well as the constraints that govern such interactions.


Information Base Source Reference Tourist Guide Attribute Path Data Base System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Abiteboul and A. Bonner. Objects and Views. In Proc. ACM-SIGMOD Conference, pages 238–247, Feb. 1991.Google Scholar
  2. 2.
    S. Abiteboul and J. Van Den Bussche. Deep Equality Revisited. In T. Ling, A. Mendelzon, and L. Vieille, editors, Proc. of DOOD’95, volume 1013, pages 213–228, Dec. 1995.Google Scholar
  3. 3.
    F. Bancilhon and N. Spyratos. Update Semantics of Relational Views. ACM Trans. Database Syst., 6(4):557–575, Dec. 1981.zbMATHCrossRefGoogle Scholar
  4. 4.
    L. Campbell, T. Halping, and H. Proper. Conceptual Schemas with Abstractions: Making Flat Conceptual Schemas More Comprehensible. DKE, 20(1):39–85, June 1996.zbMATHCrossRefGoogle Scholar
  5. 5.
    B. Czejdo and D. Embley. View Specification and Manipulation for a Semantic Data Model. IS, 16(6):585–612, 1991.CrossRefGoogle Scholar
  6. 6.
    N. Delisle and M. Schwartz. Contexts: A Partitioning Concept for Hypertext. ACM Trans. Office Inf. Syst., 5(2):168–186, Apr. 1987.CrossRefGoogle Scholar
  7. 7.
    P. Feldman and D. Miller. EntityModel Clustering: Structuring a DataModel by Abstraction. Computer J., 29(4):348–360, Apr. 1986.CrossRefGoogle Scholar
  8. 8.
    M. Gandhi, E. Robertson, and D. Gucht. Levelled Entity Relationship Model. In Proc. of ER’94, pages 420–436, Manchester, U.K., Dec. 1994. Springer-Verlag.Google Scholar
  9. 9.
    G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics of consistent views. ACM Transactions on Database Systems, 13(4):486–524, Dec. 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    G. Gottlob, M. Schrefl, and B. Rock. Extending Object-Oriented Systems with Roles. ACM Trans. Inf. Syst., 14(3):268–296, July 1996.CrossRefGoogle Scholar
  11. 11.
    G. Hendrix. Encoding Knowledge in Partitioned Networks. In N. Findler, editor, Associative Networks. New York: Academic Press, 1979.Google Scholar
  12. 12.
    G. Hendrix. Encoding Knowledge in Partitioned Networks, 1979. In [?].Google Scholar
  13. 13.
    R. Hull and R. King. Semantic Database Modeling. ACM Comput. Surv., 19(3):202–260, Sept. 1987.CrossRefGoogle Scholar
  14. 14.
    V. Kashyap and A. Sheth. Semantic and Schematic Similarities between Database Objects: A Context-Based Approach. VLDB Journal, 5(4):276–304, Dec. 1996.CrossRefGoogle Scholar
  15. 15.
    R. Katz. Towards a Unified Framework for Version Modeling in Engineering Databases. ACM Comput. Surv., 22(4):375–408, Dec. 1990.CrossRefGoogle Scholar
  16. 16.
    S. Matwin and M. Kubat. The role of Context in Concept Learning. In Proc. of the ICML-96, Workshop on Learning in Context-Sensitive Domains, pages 1–5, Bari, Italy, July 1996.Google Scholar
  17. 17.
    J. McCarthy. Notes on Formalizing Context. In Proc. IJCAI-93, pages 555–560, Chambery, France, 1993.Google Scholar
  18. 18.
    R. Michalski. How to Learn Impressive Concepts: A Method Employing a Two-Tiered Knowledge Representation for Learning. In Proceedings of the 4th International Workshope in Machine Learning, pages 50–58, Irvine, CA, 1987.Google Scholar
  19. 19.
    R. Motschnig-Pitrik. An Integrated View on the Viewing Abstraction: Contexts and Perspectives in Software Develepment, AI, and Databases. Journal of Systems Integration, 5(1):23–60, Apr. 1995.CrossRefGoogle Scholar
  20. 20.
    J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos: Representing Knowledge about Information Systems. ACM Trans. Inf. Syst., 8(4), Oct. 1990. University of Toronto.Google Scholar
  21. 21.
    J. Mylopoulos and R. Motschnig-Pitrik. Partitioning Information Bases with Contexts. In Proc. of CoopIS’95, pages 44–55, Vienna, Austria, 1995.Google Scholar
  22. 22.
    J. Mylopoulos and R. Motschnig-Pitrik. Semantics, Features, and Applications of the Viewpoint Abstraction. In Proc. of CAiSE’96, pages 514–539, Heraklion, Greece, May 1996.Google Scholar
  23. 23.
    A. Ouksel and C. Naiman. Coordinating Context Building in Heterogeneous Information Systems. J. of Intelligent Inf. Systems, 3(2):151–183, 1994.CrossRefGoogle Scholar
  24. 24.
    J. Richardson and P. Schwarz. Aspects: Extending Objects to Support Multiple, Independent Roles. In Proc. ACM-SIGMOD Conference, pages 298–307, Denver, Colorado, May 1991.Google Scholar
  25. 25.
    M. Scholl, C. Laasch, and M. Tresch. Updatable Views in Object-Oriented Databases. In Proc. of DOOD’91, pages 189–207, Munich, Dec. 1991.Google Scholar
  26. 26.
    E. Sciore. Object Specialization. ACM Trans. Inf. Syst., 7(2):103–122, Apr. 1989.CrossRefGoogle Scholar
  27. 27.
    J. Shilling and P. Sweeney. Three Steps to Views: Extending the Object-Oriented Paradigm. In Proc. OO Prog., Syst., Lang. and Appl.-OOPSLA, pages 353–361, Oct. 1989.Google Scholar
  28. 28.
    V. Storey. Understanding Semantic Relationships. VLDB Journal, 2(4):455–488, Oct. 1993.CrossRefGoogle Scholar
  29. 29.
    T. Teorey, G. Wei, D. Bolton, and J. Koenig. ER Model Clustering as an Aid for User Communication and Documentation in Database Design. Commun. ACM, 32(8):975–987, Aug. 1989.CrossRefGoogle Scholar
  30. 30.
    M. Theodorakis. Contextualization: An Abstraction Mechanism for Information Modeling. PhD thesis, Department of Computer Science, University of Crete, Greece, 1998.Google Scholar
  31. 31.
    M. Theodorakis, A. Analyti, P. Constantopoulos, and N. Spyratos. A Theory of Contexts in Information Bases. Technical Report 216, ICS.FORTH-Hellas, Mar. 1998.Google Scholar
  32. 32.
    M. Theodorakis, A. Analyti, P. Constantopoulos, and N. Spyratos. Context in Information Bases. In CoopIS’98, pages 260–270, NY City, USA, Aug. 1998. IEEE Computer Society.Google Scholar
  33. 33.
    M. Theodorakis and P. Constantopoulos. Context-Based Naming in Information Bases. International Journal of Cooperative Information Systems, 6(3 & 4):269–292, 1997.CrossRefGoogle Scholar
  34. 34.
    O. Troyer and R. Janssen. On Modularity for Conceptual Data Models and the Consequences for Subtyping, Inheritance & Overriding. In Proc. of Ninth Int. Conf. on Data Eng., pages 678–685, Vienna, Austria, Apr. 1993. IEEE Computer Society.Google Scholar
  35. 35.
    D. Vermeir. Semantic Hierarchies and Abstractions in Conceptual Schemata. IS, 8(2):117–124, 1983.CrossRefGoogle Scholar
  36. 36.
    H. Weber. Modularity in Data Base System Design: A Software Engineering View of Data Base Systems. VLDB Surveys, pages 65–91, 1978.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Manos Theodorakis
    • 1
    • 2
  • Anastasia Analyti
    • 1
  • Panos Constantopoulos
    • 1
    • 2
  • Nicolas Spyratos
    • 3
  1. 1.Institute of Computer Science, FORTHHeraklion CreteGreece
  2. 2.Department of Computer ScienceUniversity of CreteHeraklionGreece
  3. 3.Universite de Paris-SudOrsay CedexFrance

Personalised recommendations